Trait sp_runtime::PerThing

source ·
pub trait PerThing: Sized + Saturating + Copy + Default + Eq + PartialEq<Self> + Ord + PartialOrd<Self> + Bounded + Debug + Div<Self, Output = Self> + Mul<Self, Output = Self> + Pow<usize, Output = Self> {
    type Inner: BaseArithmetic + Unsigned + Copy + Into<u128> + Debug;
    type Upper: BaseArithmetic + Copy + From<Self::Inner> + TryInto<Self::Inner> + UniqueSaturatedInto<Self::Inner> + Unsigned + Debug;

    const ACCURACY: Self::Inner;
Show 23 methods fn deconstruct(self) -> Self::Inner; fn from_parts(parts: Self::Inner) -> Self; fn from_float(x: f64) -> Self; fn from_rational_with_rounding<N>(
        p: N,
        q: N,
        rounding: Rounding
    ) -> Result<Self, ()>
    where
        N: Clone + Ord + TryInto<Self::Inner> + TryInto<Self::Upper> + Div<N, Output = N> + Rem<N, Output = N> + Add<N, Output = N> + AddAssign<N> + Unsigned + Zero + One,
        Self::Inner: Into<N>
; fn zero() -> Self { ... } fn is_zero(&self) -> bool { ... } fn one() -> Self { ... } fn is_one(&self) -> bool { ... } fn less_epsilon(self) -> Self { ... } fn try_less_epsilon(self) -> Result<Self, Self> { ... } fn plus_epsilon(self) -> Self { ... } fn try_plus_epsilon(self) -> Result<Self, Self> { ... } fn from_percent(x: Self::Inner) -> Self { ... } fn square(self) -> Self { ... } fn left_from_one(self) -> Self { ... } fn mul_floor<N>(self, b: N) -> N
    where
        N: Clone + UniqueSaturatedInto<Self::Inner> + Rem<N, Output = N> + Div<N, Output = N> + Mul<N, Output = N> + Add<N, Output = N> + Unsigned,
        Self::Inner: Into<N>
, { ... } fn mul_ceil<N>(self, b: N) -> N
    where
        N: Clone + UniqueSaturatedInto<Self::Inner> + Rem<N, Output = N> + Div<N, Output = N> + Mul<N, Output = N> + Add<N, Output = N> + Unsigned,
        Self::Inner: Into<N>
, { ... } fn saturating_reciprocal_mul<N>(self, b: N) -> N
    where
        N: Clone + UniqueSaturatedInto<Self::Inner> + Rem<N, Output = N> + Div<N, Output = N> + Mul<N, Output = N> + Add<N, Output = N> + Saturating + Unsigned,
        Self::Inner: Into<N>
, { ... } fn saturating_reciprocal_mul_floor<N>(self, b: N) -> N
    where
        N: Clone + UniqueSaturatedInto<Self::Inner> + Rem<N, Output = N> + Div<N, Output = N> + Mul<N, Output = N> + Add<N, Output = N> + Saturating + Unsigned,
        Self::Inner: Into<N>
, { ... } fn saturating_reciprocal_mul_ceil<N>(self, b: N) -> N
    where
        N: Clone + UniqueSaturatedInto<Self::Inner> + Rem<N, Output = N> + Div<N, Output = N> + Mul<N, Output = N> + Add<N, Output = N> + Saturating + Unsigned,
        Self::Inner: Into<N>
, { ... } fn from_fraction(x: f64) -> Self { ... } fn from_rational<N>(p: N, q: N) -> Self
    where
        N: Clone + Ord + TryInto<Self::Inner> + TryInto<Self::Upper> + Div<N, Output = N> + Rem<N, Output = N> + Add<N, Output = N> + AddAssign<N> + Unsigned + Zero + One,
        Self::Inner: Into<N>
, { ... } fn from_rational_approximation<N>(p: N, q: N) -> Self
    where
        N: Clone + Ord + TryInto<Self::Inner> + TryInto<Self::Upper> + Div<N, Output = N> + Rem<N, Output = N> + Add<N, Output = N> + AddAssign<N> + Unsigned + Zero + One,
        Self::Inner: Into<N>
, { ... }
}
Expand description

Re-export top-level arithmetic stuff. Something that implements a fixed point ration with an arbitrary granularity X, as parts per X.

Required Associated Types§

The data type used to build this per-thingy.

A data type larger than Self::Inner, used to avoid overflow in some computations. It must be able to compute ACCURACY^2.

Required Associated Constants§

The accuracy of this type.

Required Methods§

Consume self and return the number of parts per thing.

Build this type from a number of parts per thing.

Converts a fraction into Self.

Approximate the fraction p/q into a per-thing fraction.

The computation of this approximation is performed in the generic type N. Given M as the data type that can hold the maximum value of this per-thing (e.g. u32 for Perbill), this can only work if N == M or N: From<M> + TryInto<M>.

In the case of an overflow (or divide by zero), an Err is returned.

Rounding is determined by the parameter rounding, i.e.

// 989/100 is technically closer to 99%.
assert_eq!(
	Percent::from_rational_with_rounding(989u64, 1000, Down).unwrap(),
	Percent::from_parts(98),
);
assert_eq!(
	Percent::from_rational_with_rounding(984u64, 1000, NearestPrefUp).unwrap(),
	Percent::from_parts(98),
);
assert_eq!(
	Percent::from_rational_with_rounding(985u64, 1000, NearestPrefDown).unwrap(),
	Percent::from_parts(98),
);
assert_eq!(
	Percent::from_rational_with_rounding(985u64, 1000, NearestPrefUp).unwrap(),
	Percent::from_parts(99),
);
assert_eq!(
	Percent::from_rational_with_rounding(986u64, 1000, NearestPrefDown).unwrap(),
	Percent::from_parts(99),
);
assert_eq!(
	Percent::from_rational_with_rounding(981u64, 1000, Up).unwrap(),
	Percent::from_parts(99),
);
assert_eq!(
	Percent::from_rational_with_rounding(1001u64, 1000, Up),
	Err(()),
);
assert_eq!(
	Percent::from_rational_with_rounding(981u64, 1000, Up).unwrap(),
	Percent::from_parts(99),
);

Provided Methods§

Equivalent to Self::from_parts(0).

Return true if this is nothing.

Equivalent to Self::from_parts(Self::ACCURACY).

Return true if this is one.

Return the next lower value to self or self if it is already zero.

Return the next lower value to self or an error with the same value if self is already zero.

Return the next higher value to self or self if it is already one.

Return the next higher value to self or an error with the same value if self is already one.

Build this type from a percent. Equivalent to Self::from_parts(x * Self::ACCURACY / 100) but more accurate and can cope with potential type overflows.

Return the product of multiplication of this value by itself.

Return the part left when self is saturating-subtracted from Self::one().

Multiplication that always rounds down to a whole number. The standard Mul rounds to the nearest whole number.

// round to nearest
assert_eq!(Percent::from_percent(34) * 10u64, 3);
assert_eq!(Percent::from_percent(36) * 10u64, 4);

// round down
assert_eq!(Percent::from_percent(34).mul_floor(10u64), 3);
assert_eq!(Percent::from_percent(36).mul_floor(10u64), 3);

Multiplication that always rounds the result up to a whole number. The standard Mul rounds to the nearest whole number.

// round to nearest
assert_eq!(Percent::from_percent(34) * 10u64, 3);
assert_eq!(Percent::from_percent(36) * 10u64, 4);

// round up
assert_eq!(Percent::from_percent(34).mul_ceil(10u64), 4);
assert_eq!(Percent::from_percent(36).mul_ceil(10u64), 4);

Saturating multiplication by the reciprocal of self. The result is rounded to the nearest whole number and saturates at the numeric bounds instead of overflowing.

assert_eq!(Percent::from_percent(50).saturating_reciprocal_mul(10u64), 20);

Saturating multiplication by the reciprocal of self. The result is rounded down to the nearest whole number and saturates at the numeric bounds instead of overflowing.

// round to nearest
assert_eq!(Percent::from_percent(60).saturating_reciprocal_mul(10u64), 17);
// round down
assert_eq!(Percent::from_percent(60).saturating_reciprocal_mul_floor(10u64), 16);

Saturating multiplication by the reciprocal of self. The result is rounded up to the nearest whole number and saturates at the numeric bounds instead of overflowing.

// round to nearest
assert_eq!(Percent::from_percent(61).saturating_reciprocal_mul(10u64), 16);
// round up
assert_eq!(Percent::from_percent(61).saturating_reciprocal_mul_ceil(10u64), 17);
👎Deprecated: Use from_float instead

Same as Self::from_float.

Approximate the fraction p/q into a per-thing fraction. This will never overflow.

The computation of this approximation is performed in the generic type N. Given M as the data type that can hold the maximum value of this per-thing (e.g. u32 for perbill), this can only work if N == M or N: From<M> + TryInto<M>.

Note that this always rounds down, i.e.

// 989/1000 is technically closer to 99%.
assert_eq!(
	Percent::from_rational(989u64, 1000),
	Percent::from_parts(98),
);
👎Deprecated: Use from_rational instead

Same as Self::from_rational.

Implementors§