1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use core::{cell, f32, f64};
#[cfg(feature = "num-complex")]
use num_complex::Complex;
use AbsDiffEq;

/// Equality comparisons between two numbers using both the absolute difference and
/// relative based comparisons.
pub trait RelativeEq<Rhs = Self>: AbsDiffEq<Rhs>
where
    Rhs: ?Sized,
{
    /// The default relative tolerance for testing values that are far-apart.
    ///
    /// This is used when no `max_relative` value is supplied to the [`relative_eq`] macro.
    fn default_max_relative() -> Self::Epsilon;

    /// A test for equality that uses a relative comparison if the values are far apart.
    fn relative_eq(&self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon)
        -> bool;

    /// The inverse of [`RelativeEq::relative_eq`].
    fn relative_ne(
        &self,
        other: &Rhs,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        !Self::relative_eq(self, other, epsilon, max_relative)
    }
}

///////////////////////////////////////////////////////////////////////////////////////////////////
// Base implementations
///////////////////////////////////////////////////////////////////////////////////////////////////

// Implementation based on: [Comparing Floating Point Numbers, 2012 Edition]
// (https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/)
macro_rules! impl_relative_eq {
    ($T:ident, $U:ident) => {
        impl RelativeEq for $T {
            #[inline]
            fn default_max_relative() -> $T {
                $T::EPSILON
            }

            #[inline]
            #[allow(unused_imports)]
            fn relative_eq(&self, other: &$T, epsilon: $T, max_relative: $T) -> bool {
                use num_traits::float::FloatCore;
                // Handle same infinities
                if self == other {
                    return true;
                }

                // Handle remaining infinities
                if $T::is_infinite(*self) || $T::is_infinite(*other) {
                    return false;
                }

                let abs_diff = $T::abs(self - other);

                // For when the numbers are really close together
                if abs_diff <= epsilon {
                    return true;
                }

                let abs_self = $T::abs(*self);
                let abs_other = $T::abs(*other);

                let largest = if abs_other > abs_self {
                    abs_other
                } else {
                    abs_self
                };

                // Use a relative difference comparison
                abs_diff <= largest * max_relative
            }
        }
    };
}

impl_relative_eq!(f32, i32);
impl_relative_eq!(f64, i64);

///////////////////////////////////////////////////////////////////////////////////////////////////
// Derived implementations
///////////////////////////////////////////////////////////////////////////////////////////////////

impl<'a, T: RelativeEq + ?Sized> RelativeEq for &'a T {
    #[inline]
    fn default_max_relative() -> T::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(&self, other: &&'a T, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
        T::relative_eq(*self, *other, epsilon, max_relative)
    }
}

impl<'a, T: RelativeEq + ?Sized> RelativeEq for &'a mut T {
    #[inline]
    fn default_max_relative() -> T::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &&'a mut T,
        epsilon: T::Epsilon,
        max_relative: T::Epsilon,
    ) -> bool {
        T::relative_eq(*self, *other, epsilon, max_relative)
    }
}

impl<T: RelativeEq + Copy> RelativeEq for cell::Cell<T> {
    #[inline]
    fn default_max_relative() -> T::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &cell::Cell<T>,
        epsilon: T::Epsilon,
        max_relative: T::Epsilon,
    ) -> bool {
        T::relative_eq(&self.get(), &other.get(), epsilon, max_relative)
    }
}

impl<T: RelativeEq + ?Sized> RelativeEq for cell::RefCell<T> {
    #[inline]
    fn default_max_relative() -> T::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &cell::RefCell<T>,
        epsilon: T::Epsilon,
        max_relative: T::Epsilon,
    ) -> bool {
        T::relative_eq(&self.borrow(), &other.borrow(), epsilon, max_relative)
    }
}

impl<A, B> RelativeEq<[B]> for [A]
where
    A: RelativeEq<B>,
    A::Epsilon: Clone,
{
    #[inline]
    fn default_max_relative() -> A::Epsilon {
        A::default_max_relative()
    }

    #[inline]
    fn relative_eq(&self, other: &[B], epsilon: A::Epsilon, max_relative: A::Epsilon) -> bool {
        self.len() == other.len()
            && Iterator::zip(self.iter(), other)
                .all(|(x, y)| A::relative_eq(x, y, epsilon.clone(), max_relative.clone()))
    }
}

#[cfg(feature = "num-complex")]
impl<T: RelativeEq> RelativeEq for Complex<T>
where
    T::Epsilon: Clone,
{
    #[inline]
    fn default_max_relative() -> T::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Complex<T>,
        epsilon: T::Epsilon,
        max_relative: T::Epsilon,
    ) -> bool {
        T::relative_eq(&self.re, &other.re, epsilon.clone(), max_relative.clone())
            && T::relative_eq(&self.im, &other.im, epsilon, max_relative)
    }
}