Struct statrs::distribution::LogNormal
source · pub struct LogNormal { /* private fields */ }
Expand description
Implements the Log-normal distribution
Examples
use statrs::distribution::{LogNormal, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = LogNormal::new(0.0, 1.0).unwrap();
assert_eq!(n.mean().unwrap(), (0.5f64).exp());
assert!(prec::almost_eq(n.pdf(1.0), 0.3989422804014326779399, 1e-16));
Implementations§
source§impl LogNormal
impl LogNormal
sourcepub fn new(location: f64, scale: f64) -> Result<LogNormal>
pub fn new(location: f64, scale: f64) -> Result<LogNormal>
Constructs a new log-normal distribution with a location of location
and a scale of scale
Errors
Returns an error if location
or scale
are NaN
.
Returns an error if scale <= 0.0
Examples
use statrs::distribution::LogNormal;
let mut result = LogNormal::new(0.0, 1.0);
assert!(result.is_ok());
result = LogNormal::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
source§impl Continuous<f64, f64> for LogNormal
impl Continuous<f64, f64> for LogNormal
source§impl ContinuousCDF<f64, f64> for LogNormal
impl ContinuousCDF<f64, f64> for LogNormal
source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the log-normal
distribution
at x
Formula
ⓘ
(1 / 2) + (1 / 2) * erf((ln(x) - μ) / sqrt(2) * σ)
where μ
is the location, σ
is the scale, and erf
is the
error function
source§fn inverse_cdf(&self, p: T) -> K
fn inverse_cdf(&self, p: T) -> K
Due to issues with rounding and floating-point accuracy the default
implementation may be ill-behaved.
Specialized inverse cdfs should be used whenever possible.
Performs a binary search on the domain of
cdf
to obtain an approximation
of F^-1(p) := inf { x | F(x) >= p }
. Needless to say, performance may
may be lacking. Read moresource§impl Distribution<f64> for LogNormal
impl Distribution<f64> for LogNormal
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Distribution<f64> for LogNormal
impl Distribution<f64> for LogNormal
source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Returns the mean of the log-normal distribution
Formula
ⓘ
e^(μ + σ^2 / 2)
where μ
is the location and σ
is the scale
source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the log-normal distribution
Formula
ⓘ
(e^(σ^2) - 1) * e^(2μ + σ^2)
where μ
is the location and σ
is the scale
source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy of the log-normal distribution
Formula
ⓘ
ln(σe^(μ + 1 / 2) * sqrt(2π))
where μ
is the location and σ
is the scale
impl Copy for LogNormal
impl StructuralPartialEq for LogNormal
Auto Trait Implementations§
impl RefUnwindSafe for LogNormal
impl Send for LogNormal
impl Sync for LogNormal
impl Unpin for LogNormal
impl UnwindSafe for LogNormal
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.