Struct statrs::distribution::NegativeBinomial
source · pub struct NegativeBinomial { /* private fields */ }
Expand description
Implements the NegativeBinomial distribution
Examples
use statrs::distribution::{NegativeBinomial, Discrete};
use statrs::statistics::DiscreteDistribution;
use statrs::prec::almost_eq;
let r = NegativeBinomial::new(4.0, 0.5).unwrap();
assert_eq!(r.mean().unwrap(), 4.0);
assert!(almost_eq(r.pmf(0), 0.0625, 1e-8));
assert!(almost_eq(r.pmf(3), 0.15625, 1e-8));
Implementations§
source§impl NegativeBinomial
impl NegativeBinomial
sourcepub fn new(r: f64, p: f64) -> Result<NegativeBinomial>
pub fn new(r: f64, p: f64) -> Result<NegativeBinomial>
Constructs a new negative binomial distribution
with a given p
probability of the number of successes r
Errors
Returns an error if p
is NaN
, less than 0.0
,
greater than 1.0
, or if r
is NaN
or less than 0
Examples
use statrs::distribution::NegativeBinomial;
let mut result = NegativeBinomial::new(4.0, 0.5);
assert!(result.is_ok());
result = NegativeBinomial::new(-0.5, 5.0);
assert!(result.is_err());
Trait Implementations§
source§impl Clone for NegativeBinomial
impl Clone for NegativeBinomial
source§fn clone(&self) -> NegativeBinomial
fn clone(&self) -> NegativeBinomial
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl Debug for NegativeBinomial
impl Debug for NegativeBinomial
source§impl Discrete<u64, f64> for NegativeBinomial
impl Discrete<u64, f64> for NegativeBinomial
source§impl DiscreteCDF<u64, f64> for NegativeBinomial
impl DiscreteCDF<u64, f64> for NegativeBinomial
source§fn cdf(&self, x: u64) -> f64
fn cdf(&self, x: u64) -> f64
Calculates the cumulative distribution function for the
negative binomial distribution at x
Note that due to extending the distribution to the reals
(allowing positive real values for r
), while still technically
a discrete distribution the CDF behaves more like that of a
continuous distribution rather than a discrete distribution
(i.e. a smooth graph rather than a step-ladder)
Formula
ⓘ
1 - I_(1 - p)(x + 1, r)
where I_(x)(a, b)
is the regularized incomplete beta function
source§fn inverse_cdf(&self, p: T) -> K
fn inverse_cdf(&self, p: T) -> K
Due to issues with rounding and floating-point accuracy the default implementation may be ill-behaved
Specialized inverse cdfs should be used whenever possible. Read more
source§impl DiscreteDistribution<f64> for NegativeBinomial
impl DiscreteDistribution<f64> for NegativeBinomial
source§impl Distribution<u64> for NegativeBinomial
impl Distribution<u64> for NegativeBinomial
source§fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> u64
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> u64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Max<u64> for NegativeBinomial
impl Max<u64> for NegativeBinomial
source§impl Min<u64> for NegativeBinomial
impl Min<u64> for NegativeBinomial
source§impl PartialEq<NegativeBinomial> for NegativeBinomial
impl PartialEq<NegativeBinomial> for NegativeBinomial
source§fn eq(&self, other: &NegativeBinomial) -> bool
fn eq(&self, other: &NegativeBinomial) -> bool
impl Copy for NegativeBinomial
impl StructuralPartialEq for NegativeBinomial
Auto Trait Implementations§
impl RefUnwindSafe for NegativeBinomial
impl Send for NegativeBinomial
impl Sync for NegativeBinomial
impl Unpin for NegativeBinomial
impl UnwindSafe for NegativeBinomial
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.