Struct statrs::distribution::Pareto
source · pub struct Pareto { /* private fields */ }
Expand description
Implementations§
source§impl Pareto
impl Pareto
sourcepub fn new(scale: f64, shape: f64) -> Result<Pareto>
pub fn new(scale: f64, shape: f64) -> Result<Pareto>
Constructs a new Pareto distribution with scale scale
, and shape
shape.
Errors
Returns an error if any of scale
or shape
are NaN
.
Returns an error if scale <= 0.0
or shape <= 0.0
Examples
use statrs::distribution::Pareto;
let mut result = Pareto::new(1.0, 2.0);
assert!(result.is_ok());
result = Pareto::new(0.0, 0.0);
assert!(result.is_err());
Trait Implementations§
source§impl Continuous<f64, f64> for Pareto
impl Continuous<f64, f64> for Pareto
source§impl ContinuousCDF<f64, f64> for Pareto
impl ContinuousCDF<f64, f64> for Pareto
source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the Pareto
distribution at x
Formula
ⓘ
if x < x_m {
0
} else {
1 - (x_m/x)^α
}
where x_m
is the scale and α
is the shape
source§fn inverse_cdf(&self, p: T) -> K
fn inverse_cdf(&self, p: T) -> K
Due to issues with rounding and floating-point accuracy the default
implementation may be ill-behaved.
Specialized inverse cdfs should be used whenever possible.
Performs a binary search on the domain of
cdf
to obtain an approximation
of F^-1(p) := inf { x | F(x) >= p }
. Needless to say, performance may
may be lacking. Read moresource§impl Distribution<f64> for Pareto
impl Distribution<f64> for Pareto
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Distribution<f64> for Pareto
impl Distribution<f64> for Pareto
source§fn mean(&self) -> Option<f64>
fn mean(&self) -> Option<f64>
Returns the mean of the Pareto distribution
Formula
ⓘ
if α <= 1 {
INF
} else {
(α * x_m)/(α - 1)
}
where x_m
is the scale and α
is the shape
source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the Pareto distribution
Formula
ⓘ
if α <= 2 {
INF
} else {
(x_m/(α - 1))^2 * (α/(α - 2))
}
where x_m
is the scale and α
is the shape
source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy for the Pareto distribution
Formula
ⓘ
ln(α/x_m) - 1/α - 1
where x_m
is the scale and α
is the shape
impl Copy for Pareto
impl StructuralPartialEq for Pareto
Auto Trait Implementations§
impl RefUnwindSafe for Pareto
impl Send for Pareto
impl Sync for Pareto
impl Unpin for Pareto
impl UnwindSafe for Pareto
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.