Struct statrs::distribution::StudentsT
source · pub struct StudentsT { /* private fields */ }
Expand description
Implements the Student’s T distribution
Examples
use statrs::distribution::{StudentsT, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.mean().unwrap(), 0.0);
assert!(prec::almost_eq(n.pdf(0.0), 0.353553390593274, 1e-15));
Implementations§
source§impl StudentsT
impl StudentsT
sourcepub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
pub fn new(location: f64, scale: f64, freedom: f64) -> Result<StudentsT>
Constructs a new student’s t-distribution with location location
,
scale scale
,
and freedom
freedom.
Errors
Returns an error if any of location
, scale
, or freedom
are NaN
.
Returns an error if scale <= 0.0
or freedom <= 0.0
Examples
use statrs::distribution::StudentsT;
let mut result = StudentsT::new(0.0, 1.0, 2.0);
assert!(result.is_ok());
result = StudentsT::new(0.0, 0.0, 0.0);
assert!(result.is_err());
sourcepub fn location(&self) -> f64
pub fn location(&self) -> f64
Returns the location of the student’s t-distribution
Examples
use statrs::distribution::StudentsT;
let n = StudentsT::new(0.0, 1.0, 2.0).unwrap();
assert_eq!(n.location(), 0.0);
Trait Implementations§
source§impl Continuous<f64, f64> for StudentsT
impl Continuous<f64, f64> for StudentsT
source§fn pdf(&self, x: f64) -> f64
fn pdf(&self, x: f64) -> f64
Calculates the probability density function for the student’s
t-distribution
at x
Formula
Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 * (v
+ 1))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
source§fn ln_pdf(&self, x: f64) -> f64
fn ln_pdf(&self, x: f64) -> f64
Calculates the log probability density function for the student’s
t-distribution
at x
Formula
ln(Γ((v + 1) / 2) / (sqrt(vπ) * Γ(v / 2) * σ) * (1 + k^2 / v)^(-1 / 2 *
(v + 1)))
where k = (x - μ) / σ
, μ
is the location, σ
is the scale, v
is
the freedom,
and Γ
is the gamma function
source§impl ContinuousCDF<f64, f64> for StudentsT
impl ContinuousCDF<f64, f64> for StudentsT
source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the student’s
t-distribution
at x
Formula
if x < μ {
(1 / 2) * I(t, v / 2, 1 / 2)
} else {
1 - (1 / 2) * I(t, v / 2, 1 / 2)
}
where t = v / (v + k^2)
, k = (x - μ) / σ
, μ
is the location,
σ
is the scale, v
is the freedom, and I
is the regularized
incomplete
beta function
source§fn inverse_cdf(&self, x: f64) -> f64
fn inverse_cdf(&self, x: f64) -> f64
Calculates the inverse cumulative distribution function for the
Student’s T-distribution at x
source§impl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
source§fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
T
, using rng
as the source of randomness.source§impl Distribution<f64> for StudentsT
impl Distribution<f64> for StudentsT
source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy for the student’s t-distribution
Formula
- ln(σ) + (v + 1) / 2 * (ψ((v + 1) / 2) - ψ(v / 2)) + ln(sqrt(v) * B(v / 2, 1 /
2))
where σ
is the scale, v
is the freedom, ψ
is the digamma function, and B
is the
beta function
impl Copy for StudentsT
impl StructuralPartialEq for StudentsT
Auto Trait Implementations§
impl RefUnwindSafe for StudentsT
impl Send for StudentsT
impl Sync for StudentsT
impl Unpin for StudentsT
impl UnwindSafe for StudentsT
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.