Trait statrs::statistics::Statistics
source · pub trait Statistics<T> {
Show 14 methods
fn min(self) -> T;
fn max(self) -> T;
fn abs_min(self) -> T;
fn abs_max(self) -> T;
fn mean(self) -> T;
fn geometric_mean(self) -> T;
fn harmonic_mean(self) -> T;
fn variance(self) -> T;
fn std_dev(self) -> T;
fn population_variance(self) -> T;
fn population_std_dev(self) -> T;
fn covariance(self, other: Self) -> T;
fn population_covariance(self, other: Self) -> T;
fn quadratic_mean(self) -> T;
}
Expand description
The Statistics
trait provides a host of statistical utilities for
analyzing
data sets
Required Methods§
sourcefn min(self) -> T
fn min(self) -> T
Returns the minimum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(Statistics::min(x).is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(Statistics::min(y).is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(Statistics::min(z), -2.0);
sourcefn max(self) -> T
fn max(self) -> T
Returns the maximum value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(Statistics::max(x).is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(Statistics::max(y).is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(Statistics::max(z), 3.0);
sourcefn abs_min(self) -> T
fn abs_min(self) -> T
Returns the minimum absolute value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.abs_min().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.abs_min().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(z.abs_min(), 0.0);
sourcefn abs_max(self) -> T
fn abs_max(self) -> T
Returns the maximum absolute value in the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.abs_max().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.abs_max().is_nan());
let z = &[0.0, 3.0, -2.0, -8.0];
assert_eq!(z.abs_max(), 8.0);
sourcefn mean(self) -> T
fn mean(self) -> T
Evaluates the sample mean, an estimate of the population mean.
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.mean().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.mean().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_almost_eq!(z.mean(), 1.0 / 3.0, 1e-15);
sourcefn geometric_mean(self) -> T
fn geometric_mean(self) -> T
Evaluates the geometric mean of the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
.
Returns f64::NAN
if an entry is less than 0
. Returns 0
if no entry is less than 0
but there are entries equal to 0
.
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.geometric_mean().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.geometric_mean().is_nan());
let mut z = &[0.0, 3.0, -2.0];
assert!(z.geometric_mean().is_nan());
z = &[0.0, 3.0, 2.0];
assert_eq!(z.geometric_mean(), 0.0);
z = &[1.0, 2.0, 3.0];
// test value from online calculator, could be more accurate
assert_almost_eq!(z.geometric_mean(), 1.81712, 1e-5);
sourcefn harmonic_mean(self) -> T
fn harmonic_mean(self) -> T
Evaluates the harmonic mean of the data
Remarks
Returns f64::NAN
if data is empty or an entry is f64::NAN
, or if
any value
in data is less than 0
. Returns 0
if there are no values less than
0
but
there exists values equal to 0
.
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.harmonic_mean().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.harmonic_mean().is_nan());
let mut z = &[0.0, 3.0, -2.0];
assert!(z.harmonic_mean().is_nan());
z = &[0.0, 3.0, 2.0];
assert_eq!(z.harmonic_mean(), 0.0);
z = &[1.0, 2.0, 3.0];
// test value from online calculator, could be more accurate
assert_almost_eq!(z.harmonic_mean(), 1.63636, 1e-5);
sourcefn variance(self) -> T
fn variance(self) -> T
Estimates the unbiased population variance from the provided samples
Remarks
On a dataset of size N
, N-1
is used as a normalizer (Bessel’s
correction).
Returns f64::NAN
if data has less than two entries or if any entry is
f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.variance().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.variance().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(z.variance(), 19.0 / 3.0);
sourcefn std_dev(self) -> T
fn std_dev(self) -> T
Estimates the unbiased population standard deviation from the provided samples
Remarks
On a dataset of size N
, N-1
is used as a normalizer (Bessel’s
correction).
Returns f64::NAN
if data has less than two entries or if any entry is
f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.std_dev().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.std_dev().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(z.std_dev(), (19f64 / 3.0).sqrt());
sourcefn population_variance(self) -> T
fn population_variance(self) -> T
Evaluates the population variance from a full population.
Remarks
On a dataset of size N
, N
is used as a normalizer and would thus
be biased if applied to a subset
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.population_variance().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.population_variance().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(z.population_variance(), 38.0 / 9.0);
sourcefn population_std_dev(self) -> T
fn population_std_dev(self) -> T
Evaluates the population standard deviation from a full population.
Remarks
On a dataset of size N
, N
is used as a normalizer and would thus
be biased if applied to a subset
Returns f64::NAN
if data is empty or an entry is f64::NAN
Examples
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.population_std_dev().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.population_std_dev().is_nan());
let z = &[0.0, 3.0, -2.0];
assert_eq!(z.population_std_dev(), (38f64 / 9.0).sqrt());
sourcefn covariance(self, other: Self) -> T
fn covariance(self, other: Self) -> T
Estimates the unbiased population covariance between the two provided samples
Remarks
On a dataset of size N
, N-1
is used as a normalizer (Bessel’s
correction).
Returns f64::NAN
if data has less than two entries or if any entry is
f64::NAN
Panics
If the two sample containers do not contain the same number of elements
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.covariance(&[]).is_nan());
let y1 = &[0.0, f64::NAN, 3.0, -2.0];
let y2 = &[-5.0, 4.0, 10.0, f64::NAN];
assert!(y1.covariance(y2).is_nan());
let z1 = &[0.0, 3.0, -2.0];
let z2 = &[-5.0, 4.0, 10.0];
assert_almost_eq!(z1.covariance(z2), -5.5, 1e-14);
sourcefn population_covariance(self, other: Self) -> T
fn population_covariance(self, other: Self) -> T
Evaluates the population covariance between the two provider populations
Remarks
On a dataset of size N
, N
is used as a normalizer and would thus be
biased if applied to a subset
Returns f64::NAN
if data is empty or any entry is f64::NAN
Panics
If the two sample containers do not contain the same number of elements
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.population_covariance(&[]).is_nan());
let y1 = &[0.0, f64::NAN, 3.0, -2.0];
let y2 = &[-5.0, 4.0, 10.0, f64::NAN];
assert!(y1.population_covariance(y2).is_nan());
let z1 = &[0.0, 3.0, -2.0];
let z2 = &[-5.0, 4.0, 10.0];
assert_almost_eq!(z1.population_covariance(z2), -11.0 / 3.0, 1e-14);
sourcefn quadratic_mean(self) -> T
fn quadratic_mean(self) -> T
Estimates the quadratic mean (Root Mean Square) of the data
Remarks
Returns f64::NAN
if data is empty or any entry is f64::NAN
Examples
#[macro_use]
extern crate statrs;
use std::f64;
use statrs::statistics::Statistics;
let x = &[];
assert!(x.quadratic_mean().is_nan());
let y = &[0.0, f64::NAN, 3.0, -2.0];
assert!(y.quadratic_mean().is_nan());
let z = &[0.0, 3.0, -2.0];
// test value from online calculator, could be more accurate
assert_almost_eq!(z.quadratic_mean(), 2.08167, 1e-5);