pub struct LpNorm(pub i32);
Expand description
Lp norm.
Tuple Fields§
§0: i32
Trait Implementations§
source§impl<T: SimdComplexField> Norm<T> for LpNorm
impl<T: SimdComplexField> Norm<T> for LpNorm
source§fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealFieldwhere
R: Dim,
C: Dim,
S: Storage<T, R, C>,
fn norm<R, C, S>(&self, m: &Matrix<T, R, C, S>) -> T::SimdRealFieldwhere
R: Dim,
C: Dim,
S: Storage<T, R, C>,
Apply this norm to the given matrix.
source§fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<T, R1, C1, S1>,
m2: &Matrix<T, R2, C2, S2>
) -> T::SimdRealFieldwhere
R1: Dim,
C1: Dim,
S1: Storage<T, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
Use the metric induced by this norm to compute the metric distance between the two given matrices.
Auto Trait Implementations§
impl RefUnwindSafe for LpNorm
impl Send for LpNorm
impl Sync for LpNorm
impl Unpin for LpNorm
impl UnwindSafe for LpNorm
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.