pub struct BoundedBTreeSet<T, S>(_, _);
Expand description

A bounded set based on a B-Tree.

B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing the amount of work performed in a search. See BTreeSet for more details.

Unlike a standard BTreeSet, there is an enforced upper limit to the number of items in the set. All internal operations ensure this bound is respected.

Implementations§

Get the bound of the type in usize.

Create a new BoundedBTreeSet.

Does not allocate.

Consume self, and return the inner BTreeSet.

This is useful when a mutating API of the inner type is desired, and closure-based mutation such as provided by try_mutate is inconvenient.

Consumes self and mutates self via the given mutate function.

If the outcome of mutation is within bounds, Some(Self) is returned. Else, None is returned.

This is essentially a consuming shorthand Self::into_inner -> ... -> Self::try_from.

Clears the set, removing all elements.

Exactly the same semantics as BTreeSet::insert, but returns an Err (and is a noop) if the new length of the set exceeds S.

In the Err case, returns the inserted item so it can be further used without cloning.

Remove an item from the set, returning whether it was previously in the set.

The item may be any borrowed form of the set’s item type, but the ordering on the borrowed form must match the ordering on the item type.

Removes and returns the value in the set, if any, that is equal to the given one.

The value may be any borrowed form of the set’s value type, but the ordering on the borrowed form must match the ordering on the value type.

Methods from Deref<Target = BTreeSet<T, Global>>§

Constructs a double-ended iterator over a sub-range of elements in the set. The simplest way is to use the range syntax min..max, thus range(min..max) will yield elements from min (inclusive) to max (exclusive). The range may also be entered as (Bound<T>, Bound<T>), so for example range((Excluded(4), Included(10))) will yield a left-exclusive, right-inclusive range from 4 to 10.

Panics

Panics if range start > end. Panics if range start == end and both bounds are Excluded.

Examples
use std::collections::BTreeSet;
use std::ops::Bound::Included;

let mut set = BTreeSet::new();
set.insert(3);
set.insert(5);
set.insert(8);
for &elem in set.range((Included(&4), Included(&8))) {
    println!("{elem}");
}
assert_eq!(Some(&5), set.range(4..).next());

Visits the elements representing the difference, i.e., the elements that are in self but not in other, in ascending order.

Examples
use std::collections::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let diff: Vec<_> = a.difference(&b).cloned().collect();
assert_eq!(diff, [1]);

Visits the elements representing the symmetric difference, i.e., the elements that are in self or in other but not in both, in ascending order.

Examples
use std::collections::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect();
assert_eq!(sym_diff, [1, 3]);

Visits the elements representing the intersection, i.e., the elements that are both in self and other, in ascending order.

Examples
use std::collections::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);
a.insert(2);

let mut b = BTreeSet::new();
b.insert(2);
b.insert(3);

let intersection: Vec<_> = a.intersection(&b).cloned().collect();
assert_eq!(intersection, [2]);

Visits the elements representing the union, i.e., all the elements in self or other, without duplicates, in ascending order.

Examples
use std::collections::BTreeSet;

let mut a = BTreeSet::new();
a.insert(1);

let mut b = BTreeSet::new();
b.insert(2);

let union: Vec<_> = a.union(&b).cloned().collect();
assert_eq!(union, [1, 2]);

Returns true if the set contains an element equal to the value.

The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.

Examples
use std::collections::BTreeSet;

let set = BTreeSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);

Returns a reference to the element in the set, if any, that is equal to the value.

The value may be any borrowed form of the set’s element type, but the ordering on the borrowed form must match the ordering on the element type.

Examples
use std::collections::BTreeSet;

let set = BTreeSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

Examples
use std::collections::BTreeSet;

let a = BTreeSet::from([1, 2, 3]);
let mut b = BTreeSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);

Returns true if the set is a subset of another, i.e., other contains at least all the elements in self.

Examples
use std::collections::BTreeSet;

let sup = BTreeSet::from([1, 2, 3]);
let mut set = BTreeSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);

Returns true if the set is a superset of another, i.e., self contains at least all the elements in other.

Examples
use std::collections::BTreeSet;

let sub = BTreeSet::from([1, 2]);
let mut set = BTreeSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);

Returns a reference to the first element in the set, if any. This element is always the minimum of all elements in the set.

Examples

Basic usage:

use std::collections::BTreeSet;

let mut set = BTreeSet::new();
assert_eq!(set.first(), None);
set.insert(1);
assert_eq!(set.first(), Some(&1));
set.insert(2);
assert_eq!(set.first(), Some(&1));

Returns a reference to the last element in the set, if any. This element is always the maximum of all elements in the set.

Examples

Basic usage:

use std::collections::BTreeSet;

let mut set = BTreeSet::new();
assert_eq!(set.last(), None);
set.insert(1);
assert_eq!(set.last(), Some(&1));
set.insert(2);
assert_eq!(set.last(), Some(&2));

Gets an iterator that visits the elements in the BTreeSet in ascending order.

Examples
use std::collections::BTreeSet;

let set = BTreeSet::from([1, 2, 3]);
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);

Values returned by the iterator are returned in ascending order:

use std::collections::BTreeSet;

let set = BTreeSet::from([3, 1, 2]);
let mut set_iter = set.iter();
assert_eq!(set_iter.next(), Some(&1));
assert_eq!(set_iter.next(), Some(&2));
assert_eq!(set_iter.next(), Some(&3));
assert_eq!(set_iter.next(), None);

Returns the number of elements in the set.

Examples
use std::collections::BTreeSet;

let mut v = BTreeSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);

Returns true if the set contains no elements.

Examples
use std::collections::BTreeSet;

let mut v = BTreeSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());

Trait Implementations§

Converts this type into a shared reference of the (usually inferred) input type.
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Attempt to deserialise the value from input.
Attempt to skip the encoded value from input. Read more
Returns the fixed encoded size of the type. Read more
Return the number of elements in self_encoded.
Returns the “default value” for a type. Read more
The resulting type after dereferencing.
Dereferences the value.
Convert self to a slice and append it to the destination.
If possible give a hint of expected size of the encoding. Read more
Convert self to an owned vector.
Convert self to a slice and then invoke the given closure with it.
Calculates the encoded size. Read more
Converts to this type from the input type.
The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
Upper bound, in bytes, of the maximum encoded size of this item.
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Decode the length of the storage value at key. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type identifying for which type info is provided. Read more
Returns the static type identifier for Self.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Convert from a value of T into an equivalent instance of Option<Self>. Read more
Consume self to return Some equivalent value of Option<T>. Read more
True iff no bits are set.
Return the value of Self that is clear.
Converts self into T using Into<T>. Read more
Decode Self and consume all of the given input data. Read more
Decode Self and consume all of the given input data. Read more
Decode Self with the given maximum recursion depth and advance input by the number of bytes consumed. Read more
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s. Read more
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s. Read more
Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait. Read more
Compare self to key and return true if they are equal.
Causes self to use its Binary implementation when Debug-formatted. Read more
Causes self to use its Display implementation when Debug-formatted. Read more
Causes self to use its LowerExp implementation when Debug-formatted. Read more
Causes self to use its LowerHex implementation when Debug-formatted. Read more
Causes self to use its Octal implementation when Debug-formatted. Read more
Causes self to use its Pointer implementation when Debug-formatted. Read more
Causes self to use its UpperExp implementation when Debug-formatted. Read more
Causes self to use its UpperHex implementation when Debug-formatted. Read more
Formats each item in a sequence. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Get a reference to the inner from the outer.

Get a mutable reference to the inner from the outer.

Return an encoding of Self prepended by given slice.
Pipes by value. This is generally the method you want to use. Read more
Borrows self and passes that borrow into the pipe function. Read more
Mutably borrows self and passes that borrow into the pipe function. Read more
Borrows self, then passes self.borrow() into the pipe function. Read more
Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Borrows self, then passes self.as_ref() into the pipe function.
Mutably borrows self, then passes self.as_mut() into the pipe function. Read more
Borrows self, then passes self.deref() into the pipe function.
Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more
The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
Convert from a value of T into an equivalent instance of Self. Read more
Consume self to return an equivalent value of T. Read more
Immutable access to a value. Read more
Mutable access to a value. Read more
Immutable access to the Borrow<B> of a value. Read more
Mutable access to the BorrowMut<B> of a value. Read more
Immutable access to the AsRef<R> view of a value. Read more
Mutable access to the AsMut<R> view of a value. Read more
Immutable access to the Deref::Target of a value. Read more
Mutable access to the Deref::Target of a value. Read more
Calls .tap() only in debug builds, and is erased in release builds.
Calls .tap_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more
Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_ref() only in debug builds, and is erased in release builds. Read more
Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more
Calls .tap_deref() only in debug builds, and is erased in release builds. Read more
Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The error type that gets returned when a collection can’t be made from self.
Consume self and try to collect the results into C. Read more
Attempts to convert self into T using TryInto<T>. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
The counterpart to unchecked_from.
Consume self to return an equivalent value of T.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more