Type Definition nalgebra::geometry::UnitQuaternion
source · pub type UnitQuaternion<T> = Unit<Quaternion<T>>;
Expand description
A unit quaternions. May be used to represent a rotation.
Implementations§
source§impl<T: SimdRealField> UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> UnitQuaternion<T>where
T::Element: SimdRealField,
sourcepub fn angle(&self) -> T
pub fn angle(&self) -> T
The rotation angle in [0; pi] of this unit quaternion.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
assert_eq!(rot.angle(), 1.78);
sourcepub fn quaternion(&self) -> &Quaternion<T>
pub fn quaternion(&self) -> &Quaternion<T>
The underlying quaternion.
Same as self.as_ref()
.
Example
let axis = UnitQuaternion::identity();
assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));
sourcepub fn conjugate(&self) -> Self
pub fn conjugate(&self) -> Self
Compute the conjugate of this unit quaternion.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let conj = rot.conjugate();
assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));
sourcepub fn inverse(&self) -> Self
pub fn inverse(&self) -> Self
Inverts this quaternion if it is not zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
let inv = rot.inverse();
assert_eq!(rot * inv, UnitQuaternion::identity());
assert_eq!(inv * rot, UnitQuaternion::identity());
sourcepub fn angle_to(&self, other: &Self) -> T
pub fn angle_to(&self, other: &Self) -> T
The rotation angle needed to make self
and other
coincide.
Example
let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
sourcepub fn rotation_to(&self, other: &Self) -> Self
pub fn rotation_to(&self, other: &Self) -> Self
The unit quaternion needed to make self
and other
coincide.
The result is such that: self.rotation_to(other) * self == other
.
Example
let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
let rot_to = rot1.rotation_to(&rot2);
assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
sourcepub fn lerp(&self, other: &Self, t: T) -> Quaternion<T>
pub fn lerp(&self, other: &Self, t: T) -> Quaternion<T>
Linear interpolation between two unit quaternions.
The result is not normalized.
Example
let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));
sourcepub fn nlerp(&self, other: &Self, t: T) -> Self
pub fn nlerp(&self, other: &Self, t: T) -> Self
Normalized linear interpolation between two unit quaternions.
This is the same as self.lerp
except that the result is normalized.
Example
let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));
sourcepub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T: RealField,
pub fn slerp(&self, other: &Self, t: T) -> Selfwhere
T: RealField,
Spherical linear interpolation between two unit quaternions.
Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
is not well-defined). Use .try_slerp
instead to avoid the panic.
Examples:
let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
let q = q1.slerp(&q2, 1.0 / 3.0);
assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
sourcepub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where
T: RealField,
pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>where
T: RealField,
Computes the spherical linear interpolation between two unit quaternions or returns None
if both quaternions are approximately 180 degrees apart (in which case the interpolation is
not well-defined).
Arguments
self
: the first quaternion to interpolate from.other
: the second quaternion to interpolate toward.t
: the interpolation parameter. Should be between 0 and 1.epsilon
: the value below which the sinus of the angle separating both quaternion must be to returnNone
.
sourcepub fn conjugate_mut(&mut self)
pub fn conjugate_mut(&mut self)
Compute the conjugate of this unit quaternion in-place.
sourcepub fn inverse_mut(&mut self)
pub fn inverse_mut(&mut self)
Inverts this quaternion if it is not zero.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let mut rot = UnitQuaternion::new(axisangle);
rot.inverse_mut();
assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());
assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());
sourcepub fn axis(&self) -> Option<Unit<Vector3<T>>>where
T: RealField,
pub fn axis(&self) -> Option<Unit<Vector3<T>>>where
T: RealField,
The rotation axis of this unit quaternion or None
if the rotation is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis(), Some(axis));
// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis().is_none());
sourcepub fn scaled_axis(&self) -> Vector3<T>where
T: RealField,
pub fn scaled_axis(&self) -> Vector3<T>where
T: RealField,
The rotation axis of this unit quaternion multiplied by the rotation angle.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let rot = UnitQuaternion::new(axisangle);
assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
sourcepub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>where
T: RealField,
pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>where
T: RealField,
The rotation axis and angle in ]0, pi] of this unit quaternion.
Returns None
if the angle is zero.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(rot.axis_angle(), Some((axis, angle)));
// Case with a zero angle.
let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
assert!(rot.axis_angle().is_none());
sourcepub fn exp(&self) -> Quaternion<T>
pub fn exp(&self) -> Quaternion<T>
Compute the exponential of a quaternion.
Note that this function yields a Quaternion<T>
because it loses the unit property.
sourcepub fn ln(&self) -> Quaternion<T>where
T: RealField,
pub fn ln(&self) -> Quaternion<T>where
T: RealField,
Compute the natural logarithm of a quaternion.
Note that this function yields a Quaternion<T>
because it loses the unit property.
The vector part of the return value corresponds to the axis-angle representation (divided
by 2.0) of this unit quaternion.
Example
let axisangle = Vector3::new(0.1, 0.2, 0.3);
let q = UnitQuaternion::new(axisangle);
assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);
sourcepub fn powf(&self, n: T) -> Selfwhere
T: RealField,
pub fn powf(&self, n: T) -> Selfwhere
T: RealField,
Raise the quaternion to a given floating power.
This returns the unit quaternion that identifies a rotation with axis self.axis()
and
angle self.angle() × n
.
Example
let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let angle = 1.2;
let rot = UnitQuaternion::from_axis_angle(&axis, angle);
let pow = rot.powf(2.0);
assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
assert_eq!(pow.angle(), 2.4);
sourcepub fn to_rotation_matrix(&self) -> Rotation<T, 3>
pub fn to_rotation_matrix(&self) -> Rotation<T, 3>
Builds a rotation matrix from this unit quaternion.
Example
let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let rot = q.to_rotation_matrix();
let expected = Matrix3::new(0.8660254, -0.5, 0.0,
0.5, 0.8660254, 0.0,
0.0, 0.0, 1.0);
assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
sourcepub fn to_euler_angles(&self) -> (T, T, T)where
T: RealField,
👎Deprecated: This is renamed to use .euler_angles()
.
pub fn to_euler_angles(&self) -> (T, T, T)where
T: RealField,
.euler_angles()
.Converts this unit quaternion into its equivalent Euler angles.
The angles are produced in the form (roll, pitch, yaw).
sourcepub fn euler_angles(&self) -> (T, T, T)where
T: RealField,
pub fn euler_angles(&self) -> (T, T, T)where
T: RealField,
Retrieves the euler angles corresponding to this unit quaternion.
The angles are produced in the form (roll, pitch, yaw).
Example
let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
sourcepub fn to_homogeneous(&self) -> Matrix4<T>
pub fn to_homogeneous(&self) -> Matrix4<T>
Converts this unit quaternion into its equivalent homogeneous transformation matrix.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
0.5, 0.8660254, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);
sourcepub fn transform_point(&self, pt: &Point3<T>) -> Point3<T>
pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T>
Rotate a point by this unit quaternion.
This is the same as the multiplication self * pt
.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
sourcepub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
Rotate a vector by this unit quaternion.
This is the same as the multiplication self * v
.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T>
pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T>
Rotate a point by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the point.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T>
Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
sourcepub fn inverse_transform_unit_vector(
&self,
v: &Unit<Vector3<T>>
) -> Unit<Vector3<T>>
pub fn inverse_transform_unit_vector(
&self,
v: &Unit<Vector3<T>>
) -> Unit<Vector3<T>>
Rotate a vector by the inverse of this unit quaternion. This may be cheaper than inverting the unit quaternion and transforming the vector.
Example
let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2);
let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
sourcepub fn append_axisangle_linearized(&self, axisangle: &Vector3<T>) -> Self
pub fn append_axisangle_linearized(&self, axisangle: &Vector3<T>) -> Self
Appends to self
a rotation given in the axis-angle form, using a linearized formulation.
This is faster, but approximate, way to compute UnitQuaternion::new(axisangle) * self
.
source§impl<T: SimdRealField> UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> UnitQuaternion<T>where
T::Element: SimdRealField,
sourcepub fn identity() -> Self
pub fn identity() -> Self
The rotation identity.
Example
let q = UnitQuaternion::identity();
let q2 = UnitQuaternion::new(Vector3::new(1.0, 2.0, 3.0));
let v = Vector3::new_random();
let p = Point3::from(v);
assert_eq!(q * q2, q2);
assert_eq!(q2 * q, q2);
assert_eq!(q * v, v);
assert_eq!(q * p, p);
sourcepub fn cast<To>(self) -> UnitQuaternion<To>where
To: SupersetOf<T> + Scalar,
pub fn cast<To>(self) -> UnitQuaternion<To>where
To: SupersetOf<T> + Scalar,
Cast the components of self
to another type.
Example
let q = UnitQuaternion::from_euler_angles(1.0f64, 2.0, 3.0);
let q2 = q.cast::<f32>();
assert_relative_eq!(q2, UnitQuaternion::from_euler_angles(1.0f32, 2.0, 3.0), epsilon = 1.0e-6);
sourcepub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Selfwhere
SB: Storage<T, U3>,
pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Selfwhere
SB: Storage<T, U3>,
Creates a new quaternion from a unit vector (the rotation axis) and an angle (the rotation angle).
Example
let axis = Vector3::y_axis();
let angle = f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_axis_angle(&axis, angle);
assert_eq!(q.axis().unwrap(), axis);
assert_eq!(q.angle(), angle);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
sourcepub fn from_quaternion(q: Quaternion<T>) -> Self
pub fn from_quaternion(q: Quaternion<T>) -> Self
Creates a new unit quaternion from a quaternion.
The input quaternion will be normalized.
sourcepub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self
Creates a new unit quaternion from Euler angles.
The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
Example
let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
let euler = rot.euler_angles();
assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
sourcepub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self
pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self
Builds an unit quaternion from a basis assumed to be orthonormal.
In order to get a valid unit-quaternion, the input must be an orthonormal basis, i.e., all vectors are normalized, and the are all orthogonal to each other. These invariants are not checked by this method.
sourcepub fn from_rotation_matrix(rotmat: &Rotation3<T>) -> Self
pub fn from_rotation_matrix(rotmat: &Rotation3<T>) -> Self
Builds an unit quaternion from a rotation matrix.
Example
let axis = Vector3::y_axis();
let angle = 0.1;
let rot = Rotation3::from_axis_angle(&axis, angle);
let q = UnitQuaternion::from_rotation_matrix(&rot);
assert_relative_eq!(q.to_rotation_matrix(), rot, epsilon = 1.0e-6);
assert_relative_eq!(q.axis().unwrap(), rot.axis().unwrap(), epsilon = 1.0e-6);
assert_relative_eq!(q.angle(), rot.angle(), epsilon = 1.0e-6);
sourcepub fn from_matrix(m: &Matrix3<T>) -> Selfwhere
T: RealField,
pub fn from_matrix(m: &Matrix3<T>) -> Selfwhere
T: RealField,
Builds an unit quaternion by extracting the rotation part of the given transformation m
.
This is an iterative method. See .from_matrix_eps
to provide mover
convergence parameters and starting solution.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
sourcepub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
pub fn from_matrix_eps(
m: &Matrix3<T>,
eps: T,
max_iter: usize,
guess: Self
) -> Selfwhere
T: RealField,
Builds an unit quaternion by extracting the rotation part of the given transformation m
.
This implements “A Robust Method to Extract the Rotational Part of Deformations” by Müller et al.
Parameters
m
: the matrix from which the rotational part is to be extracted.eps
: the angular errors tolerated between the current rotation and the optimal one.max_iter
: the maximum number of iterations. Loops indefinitely until convergence if set to0
.guess
: an estimate of the solution. Convergence will be significantly faster if an initial solution close to the actual solution is provided. Can be set toUnitQuaternion::identity()
if no other guesses come to mind.
sourcepub fn rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
The unit quaternion needed to make a
and b
be collinear and point toward the same
direction. Returns None
if both a
and b
are collinear and point to opposite directions, as then the
rotation desired is not unique.
Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);
sourcepub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>,
s: T
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>,
s: T
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Vector3::new(1.0, 2.0, 3.0);
let b = Vector3::new(3.0, 1.0, 2.0);
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
sourcepub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<T, U3, SB>>,
b: &Unit<Vector<T, U3, SC>>
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn rotation_between_axis<SB, SC>(
a: &Unit<Vector<T, U3, SB>>,
b: &Unit<Vector<T, U3, SC>>
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
The unit quaternion needed to make a
and b
be collinear and point toward the same
direction.
Example
let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q = UnitQuaternion::rotation_between(&a, &b).unwrap();
assert_relative_eq!(q * a, b);
assert_relative_eq!(q.inverse() * b, a);
sourcepub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<T, U3, SB>>,
nb: &Unit<Vector<T, U3, SC>>,
s: T
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn scaled_rotation_between_axis<SB, SC>(
na: &Unit<Vector<T, U3, SB>>,
nb: &Unit<Vector<T, U3, SC>>,
s: T
) -> Option<Self>where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
The smallest rotation needed to make a
and b
collinear and point toward the same
direction, raised to the power s
.
Example
let a = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
let b = Unit::new_normalize(Vector3::new(3.0, 1.0, 2.0));
let q2 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.2).unwrap();
let q5 = UnitQuaternion::scaled_rotation_between(&a, &b, 0.5).unwrap();
assert_relative_eq!(q2 * q2 * q2 * q2 * q2 * a, b, epsilon = 1.0e-6);
assert_relative_eq!(q5 * q5 * a, b, epsilon = 1.0e-6);
sourcepub fn face_towards<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn face_towards<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
Creates an unit quaternion that corresponds to the local frame of an observer standing at the
origin and looking toward dir
.
It maps the z
axis to the direction dir
.
Arguments
- dir - The look direction. It does not need to be normalized.
- up - The vertical direction. It does not need to be normalized.
The only requirement of this parameter is to not be collinear to
dir
. Non-collinearity is not checked.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let q = UnitQuaternion::face_towards(&dir, &up);
assert_relative_eq!(q * Vector3::z(), dir.normalize());
sourcepub fn new_observer_frames<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
👎Deprecated: renamed to face_towards
pub fn new_observer_frames<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
face_towards
Deprecated: Use UnitQuaternion::face_towards instead.
sourcepub fn look_at_rh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn look_at_rh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
Builds a right-handed look-at view matrix without translation.
It maps the view direction dir
to the negative z
axis.
This conforms to the common notion of right handed look-at matrix from the computer
graphics community.
Arguments
- dir − The view direction. It does not need to be normalized.
- up - A vector approximately aligned with required the vertical axis. It does not need
to be normalized. The only requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let q = UnitQuaternion::look_at_rh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), -Vector3::z());
sourcepub fn look_at_lh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
pub fn look_at_lh<SB, SC>(
dir: &Vector<T, U3, SB>,
up: &Vector<T, U3, SC>
) -> Selfwhere
SB: Storage<T, U3>,
SC: Storage<T, U3>,
Builds a left-handed look-at view matrix without translation.
It maps the view direction dir
to the positive z
axis.
This conforms to the common notion of left handed look-at matrix from the computer
graphics community.
Arguments
- dir − The view direction. It does not need to be normalized.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
dir
.
Example
let dir = Vector3::new(1.0, 2.0, 3.0);
let up = Vector3::y();
let q = UnitQuaternion::look_at_lh(&dir, &up);
assert_relative_eq!(q * dir.normalize(), Vector3::z());
sourcepub fn new<SB>(axisangle: Vector<T, U3, SB>) -> Selfwhere
SB: Storage<T, U3>,
pub fn new<SB>(axisangle: Vector<T, U3, SB>) -> Selfwhere
SB: Storage<T, U3>,
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than T::default_epsilon()
, this returns the identity rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new(axisangle);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(UnitQuaternion::new(Vector3::<f32>::zeros()), UnitQuaternion::identity());
sourcepub fn new_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Selfwhere
SB: Storage<T, U3>,
pub fn new_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Selfwhere
SB: Storage<T, U3>,
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than eps
, this returns the identity rotation.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::new_eps(axisangle, 1.0e-6);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::new_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
sourcepub fn from_scaled_axis<SB>(axisangle: Vector<T, U3, SB>) -> Selfwhere
SB: Storage<T, U3>,
pub fn from_scaled_axis<SB>(axisangle: Vector<T, U3, SB>) -> Selfwhere
SB: Storage<T, U3>,
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than T::default_epsilon()
, this returns the identity rotation.
Same as Self::new(axisangle)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis(axisangle);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// A zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis(Vector3::<f32>::zeros()), UnitQuaternion::identity());
sourcepub fn from_scaled_axis_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Selfwhere
SB: Storage<T, U3>,
pub fn from_scaled_axis_eps<SB>(axisangle: Vector<T, U3, SB>, eps: T) -> Selfwhere
SB: Storage<T, U3>,
Creates a new unit quaternion rotation from a rotation axis scaled by the rotation angle.
If axisangle
has a magnitude smaller than eps
, this returns the identity rotation.
Same as Self::new_eps(axisangle, eps)
.
Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
let q = UnitQuaternion::from_scaled_axis_eps(axisangle, 1.0e-6);
assert_relative_eq!(q * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
assert_relative_eq!(q * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
// An almost zero vector yields an identity.
assert_eq!(UnitQuaternion::from_scaled_axis_eps(Vector3::new(1.0e-8, 1.0e-9, 1.0e-7), 1.0e-6), UnitQuaternion::identity());
sourcepub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Selfwhere
T: RealField,
pub fn mean_of(unit_quaternions: impl IntoIterator<Item = Self>) -> Selfwhere
T: RealField,
Create the mean unit quaternion from a data structure implementing IntoIterator returning unit quaternions.
The method will panic if the iterator does not return any quaternions.
Algorithm from: Oshman, Yaakov, and Avishy Carmi. “Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter.” Journal of Guidance, Control, and Dynamics 29.4 (2006): 879-891.
Example
let q1 = UnitQuaternion::from_euler_angles(0.0, 0.0, 0.0);
let q2 = UnitQuaternion::from_euler_angles(-0.1, 0.0, 0.0);
let q3 = UnitQuaternion::from_euler_angles(0.1, 0.0, 0.0);
let quat_vec = vec![q1, q2, q3];
let q_mean = UnitQuaternion::mean_of(quat_vec);
let euler_angles_mean = q_mean.euler_angles();
assert_relative_eq!(euler_angles_mean.0, 0.0, epsilon = 1.0e-7)
Trait Implementations§
source§impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
.source§impl<T: SimdRealField> AbstractRotation<T, 3> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> AbstractRotation<T, 3> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn inverse_mut(&mut self)
fn inverse_mut(&mut self)
self
to its inverse.source§fn transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3>
fn transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3>
source§fn transform_point(&self, p: &Point<T, 3>) -> Point<T, 3>
fn transform_point(&self, p: &Point<T, 3>) -> Point<T, 3>
source§fn inverse_transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3>
fn inverse_transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3>
source§fn inverse_transform_point(&self, p: &Point<T, 3>) -> Point<T, 3>
fn inverse_transform_point(&self, p: &Point<T, 3>) -> Point<T, 3>
source§impl<T: RealField> Default for UnitQuaternion<T>
impl<T: RealField> Default for UnitQuaternion<T>
source§impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'a, 'b, T, C> Div<&'b Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Div<&'b Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'b, T, C> Div<&'b Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Div<&'b Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'a, T, C> Div<Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Div<Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<T, C> Div<Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Div<Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
/
operator.source§impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
/
operator.source§impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b Rotation<T, 3>)
fn div_assign(&mut self, rhs: &'b Rotation<T, 3>)
/=
operation. Read moresource§impl<'b, T: SimdRealField> DivAssign<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> DivAssign<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: Rotation<T, 3>)
fn div_assign(&mut self, rhs: Rotation<T, 3>)
/=
operation. Read moresource§impl<T: SimdRealField> DivAssign<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> DivAssign<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn div_assign(&mut self, rhs: UnitQuaternion<T>)
fn div_assign(&mut self, rhs: UnitQuaternion<T>)
/=
operation. Read moresource§impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 16]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 16]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 16]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 16]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
source§impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 2]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 2]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 2]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 2]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
source§impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 4]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 4]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 4]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 4]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
source§impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 8]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 8]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
impl<T> From<[Unit<Quaternion<<T as SimdValue>::Element>>; 8]> for UnitQuaternion<T>where
T: From<[<T as SimdValue>::Element; 8]> + Scalar + Copy + PrimitiveSimdValue,
T::Element: Scalar + Copy,
source§impl<T: SimdRealField> From<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> From<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Matrix<T, Const<3>, Const<1>, SB>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Matrix<T, Const<3>, Const<1>, SB>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Point<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Point<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'a, 'b, T, C> Mul<&'b Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, 'b, T, C> Mul<&'b Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'b, T, C> Mul<&'b Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'b, T, C> Mul<&'b Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, 'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Point<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Point<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Point<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Rotation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'a, T, C> Mul<Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<'a, T, C> Mul<Transform<T, C, 3>> for &'a UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<T, C> Mul<Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
impl<T, C> Mul<Transform<T, C, 3>> for UnitQuaternion<T>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
C: TCategoryMul<TAffine>,
source§impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<DualQuaternion<T>>
type Output = Unit<DualQuaternion<T>>
*
operator.source§impl<'a, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField, SB: Storage<T, Const<3>>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
§type Output = Unit<Quaternion<T>>
type Output = Unit<Quaternion<T>>
*
operator.source§impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, 3>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, 3>)
*=
operation. Read moresource§impl<'b, T: SimdRealField> MulAssign<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> MulAssign<&'b Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Rotation<T, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: Rotation<T, 3>)
fn mul_assign(&mut self, rhs: Rotation<T, 3>)
*=
operation. Read moresource§impl<T: SimdRealField> MulAssign<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> MulAssign<Unit<Quaternion<T>>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField> One for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> One for UnitQuaternion<T>where
T::Element: SimdRealField,
source§impl<T: Scalar + ClosedNeg + PartialEq> PartialEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
impl<T: Scalar + ClosedNeg + PartialEq> PartialEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
source§impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq<Unit<Quaternion<T>>> for UnitQuaternion<T>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
RelativeEq::relative_eq
.source§impl<T: Scalar + SimdValue> SimdValue for UnitQuaternion<T>where
T::Element: Scalar,
impl<T: Scalar + SimdValue> SimdValue for UnitQuaternion<T>where
T::Element: Scalar,
§type Element = Unit<Quaternion<<T as SimdValue>::Element>>
type Element = Unit<Quaternion<<T as SimdValue>::Element>>
§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
self
without bound-checking.source§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
self
by val
without bound-checking.source§impl<T1, T2, R> SubsetOf<Isometry<T2, R, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Isometry<T2, R, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
source§fn to_superset(&self) -> Isometry<T2, R, 3>
fn to_superset(&self) -> Isometry<T2, R, 3>
self
to the equivalent element of its superset.source§fn is_in_subset(iso: &Isometry<T2, R, 3>) -> bool
fn is_in_subset(iso: &Isometry<T2, R, 3>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(iso: &Isometry<T2, R, 3>) -> Self
fn from_superset_unchecked(iso: &Isometry<T2, R, 3>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix<T2, Const<{ typenum::$D::USIZE }>, Const<{ typenum::$D::USIZE }>, ArrayStorage<T2, 4, 4>>> for UnitQuaternion<T1>
impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix<T2, Const<{ typenum::$D::USIZE }>, Const<{ typenum::$D::USIZE }>, ArrayStorage<T2, 4, 4>>> for UnitQuaternion<T1>
source§fn to_superset(&self) -> Matrix4<T2>
fn to_superset(&self) -> Matrix4<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(m: &Matrix4<T2>) -> bool
fn is_in_subset(m: &Matrix4<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(m: &Matrix4<T2>) -> Self
fn from_superset_unchecked(m: &Matrix4<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Rotation<T2, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Rotation<T2, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
source§fn to_superset(&self) -> Rotation3<T2>
fn to_superset(&self) -> Rotation3<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(rot: &Rotation3<T2>) -> bool
fn is_in_subset(rot: &Rotation3<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(rot: &Rotation3<T2>) -> Self
fn from_superset_unchecked(rot: &Rotation3<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, 3> + SupersetOf<Self>,
source§fn to_superset(&self) -> Similarity<T2, R, 3>
fn to_superset(&self) -> Similarity<T2, R, 3>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
source§fn to_superset(&self) -> Transform<T2, C, 3>
fn to_superset(&self) -> Transform<T2, C, 3>
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
fn is_in_subset(t: &Transform<T2, C, 3>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for UnitQuaternion<T1>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
source§fn to_superset(&self) -> UnitDualQuaternion<T2>
fn to_superset(&self) -> UnitDualQuaternion<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Unit<Quaternion<T2>>> for UnitQuaternion<T1>where
T1: Scalar,
T2: Scalar + SupersetOf<T1>,
impl<T1, T2> SubsetOf<Unit<Quaternion<T2>>> for UnitQuaternion<T1>where
T1: Scalar,
T2: Scalar + SupersetOf<T1>,
source§fn to_superset(&self) -> UnitQuaternion<T2>
fn to_superset(&self) -> UnitQuaternion<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(uq: &UnitQuaternion<T2>) -> bool
fn is_in_subset(uq: &UnitQuaternion<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(uq: &UnitQuaternion<T2>) -> Self
fn from_superset_unchecked(uq: &UnitQuaternion<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.