Struct statrs::distribution::Erlang
source · pub struct Erlang { /* private fields */ }
Expand description
Implements the Erlang distribution which is a special case of the Gamma distribution
Examples
use statrs::distribution::{Erlang, Continuous};
use statrs::statistics::Distribution;
use statrs::prec;
let n = Erlang::new(3, 1.0).unwrap();
assert_eq!(n.mean().unwrap(), 3.0);
assert!(prec::almost_eq(n.pdf(2.0), 0.270670566473225383788, 1e-15));
Implementations§
source§impl Erlang
impl Erlang
sourcepub fn new(shape: u64, rate: f64) -> Result<Erlang>
pub fn new(shape: u64, rate: f64) -> Result<Erlang>
Constructs a new erlang distribution with a shape (k)
of shape
and a rate (λ) of rate
Errors
Returns an error if shape
or rate
are NaN
.
Also returns an error if shape == 0
or rate <= 0.0
Examples
use statrs::distribution::Erlang;
let mut result = Erlang::new(3, 1.0);
assert!(result.is_ok());
result = Erlang::new(0, 0.0);
assert!(result.is_err());
Trait Implementations§
source§impl Continuous<f64, f64> for Erlang
impl Continuous<f64, f64> for Erlang
source§impl ContinuousCDF<f64, f64> for Erlang
impl ContinuousCDF<f64, f64> for Erlang
source§fn cdf(&self, x: f64) -> f64
fn cdf(&self, x: f64) -> f64
Calculates the cumulative distribution function for the erlang
distribution
at x
Formula
ⓘ
γ(k, λx) (k - 1)!
where k
is the shape, λ
is the rate, and γ
is the lower
incomplete gamma function
source§fn inverse_cdf(&self, p: T) -> K
fn inverse_cdf(&self, p: T) -> K
Due to issues with rounding and floating-point accuracy the default
implementation may be ill-behaved.
Specialized inverse cdfs should be used whenever possible.
Performs a binary search on the domain of
cdf
to obtain an approximation
of F^-1(p) := inf { x | F(x) >= p }
. Needless to say, performance may
may be lacking. Read moresource§impl Distribution<f64> for Erlang
impl Distribution<f64> for Erlang
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Distribution<f64> for Erlang
impl Distribution<f64> for Erlang
source§fn variance(&self) -> Option<f64>
fn variance(&self) -> Option<f64>
Returns the variance of the erlang distribution
Formula
ⓘ
k / λ^2
where α
is the shape and λ
is the rate
source§fn entropy(&self) -> Option<f64>
fn entropy(&self) -> Option<f64>
Returns the entropy of the erlang distribution
Formula
ⓘ
k - ln(λ) + ln(Γ(k)) + (1 - k) * ψ(k)
where k
is the shape, λ
is the rate, Γ
is the gamma function,
and ψ
is the digamma function
impl Copy for Erlang
impl StructuralPartialEq for Erlang
Auto Trait Implementations§
impl RefUnwindSafe for Erlang
impl Send for Erlang
impl Sync for Erlang
impl Unpin for Erlang
impl UnwindSafe for Erlang
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.