Struct statrs::distribution::Laplace
source · pub struct Laplace { /* private fields */ }
Expand description
Implementations§
source§impl Laplace
impl Laplace
sourcepub fn new(location: f64, scale: f64) -> Result<Laplace>
pub fn new(location: f64, scale: f64) -> Result<Laplace>
Constructs a new laplace distribution with the given location and scale.
Errors
Returns an error if location or scale are NaN
or scale <= 0.0
Examples
use statrs::distribution::Laplace;
let mut result = Laplace::new(0.0, 1.0);
assert!(result.is_ok());
result = Laplace::new(0.0, -1.0);
assert!(result.is_err());
Trait Implementations§
source§impl Continuous<f64, f64> for Laplace
impl Continuous<f64, f64> for Laplace
source§impl ContinuousCDF<f64, f64> for Laplace
impl ContinuousCDF<f64, f64> for Laplace
source§impl Distribution<f64> for Laplace
impl Distribution<f64> for Laplace
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64
Generate a random value of
T
, using rng
as the source of randomness.source§impl Distribution<f64> for Laplace
impl Distribution<f64> for Laplace
impl Copy for Laplace
impl StructuralPartialEq for Laplace
Auto Trait Implementations§
impl RefUnwindSafe for Laplace
impl Send for Laplace
impl Sync for Laplace
impl Unpin for Laplace
impl UnwindSafe for Laplace
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.