Struct statrs::distribution::Multinomial
source · pub struct Multinomial { /* private fields */ }
Expand description
Implements the Multinomial distribution which is a generalization of the Binomial distribution
Examples
use statrs::distribution::Multinomial;
use statrs::statistics::MeanN;
use nalgebra::DVector;
let n = Multinomial::new(&[0.3, 0.7], 5).unwrap();
assert_eq!(n.mean().unwrap(), DVector::from_vec(vec![1.5, 3.5]));
Implementations§
source§impl Multinomial
impl Multinomial
sourcepub fn new(p: &[f64], n: u64) -> Result<Multinomial>
pub fn new(p: &[f64], n: u64) -> Result<Multinomial>
Constructs a new multinomial distribution with probabilities p
and n
number of trials.
Errors
Returns an error if p
is empty, the sum of the elements
in p
is 0, or any element in p
is less than 0 or is f64::NAN
Note
The elements in p
do not need to be normalized
Examples
use statrs::distribution::Multinomial;
let mut result = Multinomial::new(&[0.0, 1.0, 2.0], 3);
assert!(result.is_ok());
result = Multinomial::new(&[0.0, -1.0, 2.0], 3);
assert!(result.is_err());
Trait Implementations§
source§impl Clone for Multinomial
impl Clone for Multinomial
source§fn clone(&self) -> Multinomial
fn clone(&self) -> Multinomial
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for Multinomial
impl Debug for Multinomial
source§impl<'a> Discrete<&'a [u64], f64> for Multinomial
impl<'a> Discrete<&'a [u64], f64> for Multinomial
source§fn pmf(&self, x: &[u64]) -> f64
fn pmf(&self, x: &[u64]) -> f64
Calculates the probability mass function for the multinomial
distribution
with the given x
’s corresponding to the probabilities for this
distribution
Panics
If the elements in x
do not sum to n
or if the length of x
is not
equivalent to the length of p
Formula
(n! / x_1!...x_k!) * p_i^x_i for i in 1...k
where n
is the number of trials, p_i
is the i
th probability,
x_i
is the i
th x
value, and k
is the total number of
probabilities
source§fn ln_pmf(&self, x: &[u64]) -> f64
fn ln_pmf(&self, x: &[u64]) -> f64
Calculates the log probability mass function for the multinomial
distribution
with the given x
’s corresponding to the probabilities for this
distribution
Panics
If the elements in x
do not sum to n
or if the length of x
is not
equivalent to the length of p
Formula
ln((n! / x_1!...x_k!) * p_i^x_i) for i in 1...k
where n
is the number of trials, p_i
is the i
th probability,
x_i
is the i
th x
value, and k
is the total number of
probabilities
source§impl Distribution<Vec<f64, Global>> for Multinomial
impl Distribution<Vec<f64, Global>> for Multinomial
source§fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64>
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64>
T
, using rng
as the source of randomness.source§impl MeanN<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for Multinomial
impl MeanN<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for Multinomial
source§impl PartialEq<Multinomial> for Multinomial
impl PartialEq<Multinomial> for Multinomial
source§fn eq(&self, other: &Multinomial) -> bool
fn eq(&self, other: &Multinomial) -> bool
source§impl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for Multinomial
impl VarianceN<Matrix<f64, Dynamic, Dynamic, VecStorage<f64, Dynamic, Dynamic>>> for Multinomial
impl StructuralPartialEq for Multinomial
Auto Trait Implementations§
impl RefUnwindSafe for Multinomial
impl Send for Multinomial
impl Sync for Multinomial
impl Unpin for Multinomial
impl UnwindSafe for Multinomial
Blanket Implementations§
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.