1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
//! Async executors.
//!
//! # Examples
//!
//! ```
//! use async_executor::Executor;
//! use futures_lite::future;
//!
//! // Create a new executor.
//! let ex = Executor::new();
//!
//! // Spawn a task.
//! let task = ex.spawn(async {
//! println!("Hello world");
//! });
//!
//! // Run the executor until the task completes.
//! future::block_on(ex.run(task));
//! ```
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
use std::future::Future;
use std::marker::PhantomData;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex, RwLock};
use std::task::{Poll, Waker};
use async_lock::OnceCell;
use async_task::Runnable;
use concurrent_queue::ConcurrentQueue;
use futures_lite::{future, prelude::*};
use slab::Slab;
#[doc(no_inline)]
pub use async_task::Task;
/// An async executor.
///
/// # Examples
///
/// A multi-threaded executor:
///
/// ```
/// use async_channel::unbounded;
/// use async_executor::Executor;
/// use easy_parallel::Parallel;
/// use futures_lite::future;
///
/// let ex = Executor::new();
/// let (signal, shutdown) = unbounded::<()>();
///
/// Parallel::new()
/// // Run four executor threads.
/// .each(0..4, |_| future::block_on(ex.run(shutdown.recv())))
/// // Run the main future on the current thread.
/// .finish(|| future::block_on(async {
/// println!("Hello world!");
/// drop(signal);
/// }));
/// ```
#[derive(Debug)]
pub struct Executor<'a> {
/// The executor state.
state: OnceCell<Arc<State>>,
/// Makes the `'a` lifetime invariant.
_marker: PhantomData<std::cell::UnsafeCell<&'a ()>>,
}
unsafe impl Send for Executor<'_> {}
unsafe impl Sync for Executor<'_> {}
impl UnwindSafe for Executor<'_> {}
impl RefUnwindSafe for Executor<'_> {}
impl<'a> Executor<'a> {
/// Creates a new executor.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// ```
pub const fn new() -> Executor<'a> {
Executor {
state: OnceCell::new(),
_marker: PhantomData,
}
}
/// Returns `true` if there are no unfinished tasks.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// assert!(ex.is_empty());
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(!ex.is_empty());
///
/// assert!(ex.try_tick());
/// assert!(ex.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.state().active.lock().unwrap().is_empty()
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
pub fn spawn<T: Send + 'a>(&self, future: impl Future<Output = T> + Send + 'a) -> Task<T> {
let mut active = self.state().active.lock().unwrap();
// Remove the task from the set of active tasks when the future finishes.
let index = active.vacant_entry().key();
let state = self.state().clone();
let future = async move {
let _guard = CallOnDrop(move || drop(state.active.lock().unwrap().try_remove(index)));
future.await
};
// Create the task and register it in the set of active tasks.
let (runnable, task) = unsafe { async_task::spawn_unchecked(future, self.schedule()) };
active.insert(runnable.waker());
runnable.schedule();
task
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
///
/// let ex = Executor::new();
/// assert!(!ex.try_tick()); // no tasks to run
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
match self.state().queue.pop() {
Err(_) => false,
Ok(runnable) => {
// Notify another ticker now to pick up where this ticker left off, just in case
// running the task takes a long time.
self.state().notify();
// Run the task.
runnable.run();
true
}
}
}
/// Runs a single task.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
/// use futures_lite::future;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// future::block_on(ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
let state = self.state();
let runnable = Ticker::new(state).runnable().await;
runnable.run();
}
/// Runs the executor until the given future completes.
///
/// # Examples
///
/// ```
/// use async_executor::Executor;
/// use futures_lite::future;
///
/// let ex = Executor::new();
///
/// let task = ex.spawn(async { 1 + 2 });
/// let res = future::block_on(ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
let runner = Runner::new(self.state());
// A future that runs tasks forever.
let run_forever = async {
loop {
for _ in 0..200 {
let runnable = runner.runnable().await;
runnable.run();
}
future::yield_now().await;
}
};
// Run `future` and `run_forever` concurrently until `future` completes.
future.or(run_forever).await
}
/// Returns a function that schedules a runnable task when it gets woken up.
fn schedule(&self) -> impl Fn(Runnable) + Send + Sync + 'static {
let state = self.state().clone();
// TODO(stjepang): If possible, push into the current local queue and notify the ticker.
move |runnable| {
state.queue.push(runnable).unwrap();
state.notify();
}
}
/// Returns a reference to the inner state.
fn state(&self) -> &Arc<State> {
self.state.get_or_init_blocking(|| Arc::new(State::new()))
}
}
impl Drop for Executor<'_> {
fn drop(&mut self) {
if let Some(state) = self.state.get() {
let mut active = state.active.lock().unwrap();
for w in active.drain() {
w.wake();
}
drop(active);
while state.queue.pop().is_ok() {}
}
}
}
impl<'a> Default for Executor<'a> {
fn default() -> Executor<'a> {
Executor::new()
}
}
/// A thread-local executor.
///
/// The executor can only be run on the thread that created it.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let local_ex = LocalExecutor::new();
///
/// future::block_on(local_ex.run(async {
/// println!("Hello world!");
/// }));
/// ```
#[derive(Debug)]
pub struct LocalExecutor<'a> {
/// The inner executor.
inner: Executor<'a>,
/// Makes the type `!Send` and `!Sync`.
_marker: PhantomData<Rc<()>>,
}
impl UnwindSafe for LocalExecutor<'_> {}
impl RefUnwindSafe for LocalExecutor<'_> {}
impl<'a> LocalExecutor<'a> {
/// Creates a single-threaded executor.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
/// ```
pub const fn new() -> LocalExecutor<'a> {
LocalExecutor {
inner: Executor::new(),
_marker: PhantomData,
}
}
/// Returns `true` if there are no unfinished tasks.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
/// assert!(local_ex.is_empty());
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(!local_ex.is_empty());
///
/// assert!(local_ex.try_tick());
/// assert!(local_ex.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner().is_empty()
}
/// Spawns a task onto the executor.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let local_ex = LocalExecutor::new();
///
/// let task = local_ex.spawn(async {
/// println!("Hello world");
/// });
/// ```
pub fn spawn<T: 'a>(&self, future: impl Future<Output = T> + 'a) -> Task<T> {
let mut active = self.inner().state().active.lock().unwrap();
// Remove the task from the set of active tasks when the future finishes.
let index = active.vacant_entry().key();
let state = self.inner().state().clone();
let future = async move {
let _guard = CallOnDrop(move || drop(state.active.lock().unwrap().try_remove(index)));
future.await
};
// Create the task and register it in the set of active tasks.
let (runnable, task) = unsafe { async_task::spawn_unchecked(future, self.schedule()) };
active.insert(runnable.waker());
runnable.schedule();
task
}
/// Attempts to run a task if at least one is scheduled.
///
/// Running a scheduled task means simply polling its future once.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
///
/// let ex = LocalExecutor::new();
/// assert!(!ex.try_tick()); // no tasks to run
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// assert!(ex.try_tick()); // a task was found
/// ```
pub fn try_tick(&self) -> bool {
self.inner().try_tick()
}
/// Runs a single task.
///
/// Running a task means simply polling its future once.
///
/// If no tasks are scheduled when this method is called, it will wait until one is scheduled.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let ex = LocalExecutor::new();
///
/// let task = ex.spawn(async {
/// println!("Hello world");
/// });
/// future::block_on(ex.tick()); // runs the task
/// ```
pub async fn tick(&self) {
self.inner().tick().await
}
/// Runs the executor until the given future completes.
///
/// # Examples
///
/// ```
/// use async_executor::LocalExecutor;
/// use futures_lite::future;
///
/// let local_ex = LocalExecutor::new();
///
/// let task = local_ex.spawn(async { 1 + 2 });
/// let res = future::block_on(local_ex.run(async { task.await * 2 }));
///
/// assert_eq!(res, 6);
/// ```
pub async fn run<T>(&self, future: impl Future<Output = T>) -> T {
self.inner().run(future).await
}
/// Returns a function that schedules a runnable task when it gets woken up.
fn schedule(&self) -> impl Fn(Runnable) + Send + Sync + 'static {
let state = self.inner().state().clone();
move |runnable| {
state.queue.push(runnable).unwrap();
state.notify();
}
}
/// Returns a reference to the inner executor.
fn inner(&self) -> &Executor<'a> {
&self.inner
}
}
impl<'a> Default for LocalExecutor<'a> {
fn default() -> LocalExecutor<'a> {
LocalExecutor::new()
}
}
/// The state of a executor.
#[derive(Debug)]
struct State {
/// The global queue.
queue: ConcurrentQueue<Runnable>,
/// Local queues created by runners.
local_queues: RwLock<Vec<Arc<ConcurrentQueue<Runnable>>>>,
/// Set to `true` when a sleeping ticker is notified or no tickers are sleeping.
notified: AtomicBool,
/// A list of sleeping tickers.
sleepers: Mutex<Sleepers>,
/// Currently active tasks.
active: Mutex<Slab<Waker>>,
}
impl State {
/// Creates state for a new executor.
fn new() -> State {
State {
queue: ConcurrentQueue::unbounded(),
local_queues: RwLock::new(Vec::new()),
notified: AtomicBool::new(true),
sleepers: Mutex::new(Sleepers {
count: 0,
wakers: Vec::new(),
free_ids: Vec::new(),
}),
active: Mutex::new(Slab::new()),
}
}
/// Notifies a sleeping ticker.
#[inline]
fn notify(&self) {
if self
.notified
.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
.is_ok()
{
let waker = self.sleepers.lock().unwrap().notify();
if let Some(w) = waker {
w.wake();
}
}
}
}
/// A list of sleeping tickers.
#[derive(Debug)]
struct Sleepers {
/// Number of sleeping tickers (both notified and unnotified).
count: usize,
/// IDs and wakers of sleeping unnotified tickers.
///
/// A sleeping ticker is notified when its waker is missing from this list.
wakers: Vec<(usize, Waker)>,
/// Reclaimed IDs.
free_ids: Vec<usize>,
}
impl Sleepers {
/// Inserts a new sleeping ticker.
fn insert(&mut self, waker: &Waker) -> usize {
let id = match self.free_ids.pop() {
Some(id) => id,
None => self.count + 1,
};
self.count += 1;
self.wakers.push((id, waker.clone()));
id
}
/// Re-inserts a sleeping ticker's waker if it was notified.
///
/// Returns `true` if the ticker was notified.
fn update(&mut self, id: usize, waker: &Waker) -> bool {
for item in &mut self.wakers {
if item.0 == id {
if !item.1.will_wake(waker) {
item.1 = waker.clone();
}
return false;
}
}
self.wakers.push((id, waker.clone()));
true
}
/// Removes a previously inserted sleeping ticker.
///
/// Returns `true` if the ticker was notified.
fn remove(&mut self, id: usize) -> bool {
self.count -= 1;
self.free_ids.push(id);
for i in (0..self.wakers.len()).rev() {
if self.wakers[i].0 == id {
self.wakers.remove(i);
return false;
}
}
true
}
/// Returns `true` if a sleeping ticker is notified or no tickers are sleeping.
fn is_notified(&self) -> bool {
self.count == 0 || self.count > self.wakers.len()
}
/// Returns notification waker for a sleeping ticker.
///
/// If a ticker was notified already or there are no tickers, `None` will be returned.
fn notify(&mut self) -> Option<Waker> {
if self.wakers.len() == self.count {
self.wakers.pop().map(|item| item.1)
} else {
None
}
}
}
/// Runs task one by one.
#[derive(Debug)]
struct Ticker<'a> {
/// The executor state.
state: &'a State,
/// Set to a non-zero sleeper ID when in sleeping state.
///
/// States a ticker can be in:
/// 1) Woken.
/// 2a) Sleeping and unnotified.
/// 2b) Sleeping and notified.
sleeping: AtomicUsize,
}
impl Ticker<'_> {
/// Creates a ticker.
fn new(state: &State) -> Ticker<'_> {
Ticker {
state,
sleeping: AtomicUsize::new(0),
}
}
/// Moves the ticker into sleeping and unnotified state.
///
/// Returns `false` if the ticker was already sleeping and unnotified.
fn sleep(&self, waker: &Waker) -> bool {
let mut sleepers = self.state.sleepers.lock().unwrap();
match self.sleeping.load(Ordering::SeqCst) {
// Move to sleeping state.
0 => self
.sleeping
.store(sleepers.insert(waker), Ordering::SeqCst),
// Already sleeping, check if notified.
id => {
if !sleepers.update(id, waker) {
return false;
}
}
}
self.state
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
true
}
/// Moves the ticker into woken state.
fn wake(&self) {
let id = self.sleeping.swap(0, Ordering::SeqCst);
if id != 0 {
let mut sleepers = self.state.sleepers.lock().unwrap();
sleepers.remove(id);
self.state
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
}
}
/// Waits for the next runnable task to run.
async fn runnable(&self) -> Runnable {
self.runnable_with(|| self.state.queue.pop().ok()).await
}
/// Waits for the next runnable task to run, given a function that searches for a task.
async fn runnable_with(&self, mut search: impl FnMut() -> Option<Runnable>) -> Runnable {
future::poll_fn(|cx| {
loop {
match search() {
None => {
// Move to sleeping and unnotified state.
if !self.sleep(cx.waker()) {
// If already sleeping and unnotified, return.
return Poll::Pending;
}
}
Some(r) => {
// Wake up.
self.wake();
// Notify another ticker now to pick up where this ticker left off, just in
// case running the task takes a long time.
self.state.notify();
return Poll::Ready(r);
}
}
}
})
.await
}
}
impl Drop for Ticker<'_> {
fn drop(&mut self) {
// If this ticker is in sleeping state, it must be removed from the sleepers list.
let id = self.sleeping.swap(0, Ordering::SeqCst);
if id != 0 {
let mut sleepers = self.state.sleepers.lock().unwrap();
let notified = sleepers.remove(id);
self.state
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
// If this ticker was notified, then notify another ticker.
if notified {
drop(sleepers);
self.state.notify();
}
}
}
}
/// A worker in a work-stealing executor.
///
/// This is just a ticker that also has an associated local queue for improved cache locality.
#[derive(Debug)]
struct Runner<'a> {
/// The executor state.
state: &'a State,
/// Inner ticker.
ticker: Ticker<'a>,
/// The local queue.
local: Arc<ConcurrentQueue<Runnable>>,
/// Bumped every time a runnable task is found.
ticks: AtomicUsize,
}
impl Runner<'_> {
/// Creates a runner and registers it in the executor state.
fn new(state: &State) -> Runner<'_> {
let runner = Runner {
state,
ticker: Ticker::new(state),
local: Arc::new(ConcurrentQueue::bounded(512)),
ticks: AtomicUsize::new(0),
};
state
.local_queues
.write()
.unwrap()
.push(runner.local.clone());
runner
}
/// Waits for the next runnable task to run.
async fn runnable(&self) -> Runnable {
let runnable = self
.ticker
.runnable_with(|| {
// Try the local queue.
if let Ok(r) = self.local.pop() {
return Some(r);
}
// Try stealing from the global queue.
if let Ok(r) = self.state.queue.pop() {
steal(&self.state.queue, &self.local);
return Some(r);
}
// Try stealing from other runners.
let local_queues = self.state.local_queues.read().unwrap();
// Pick a random starting point in the iterator list and rotate the list.
let n = local_queues.len();
let start = fastrand::usize(..n);
let iter = local_queues
.iter()
.chain(local_queues.iter())
.skip(start)
.take(n);
// Remove this runner's local queue.
let iter = iter.filter(|local| !Arc::ptr_eq(local, &self.local));
// Try stealing from each local queue in the list.
for local in iter {
steal(local, &self.local);
if let Ok(r) = self.local.pop() {
return Some(r);
}
}
None
})
.await;
// Bump the tick counter.
let ticks = self.ticks.fetch_add(1, Ordering::SeqCst);
if ticks % 64 == 0 {
// Steal tasks from the global queue to ensure fair task scheduling.
steal(&self.state.queue, &self.local);
}
runnable
}
}
impl Drop for Runner<'_> {
fn drop(&mut self) {
// Remove the local queue.
self.state
.local_queues
.write()
.unwrap()
.retain(|local| !Arc::ptr_eq(local, &self.local));
// Re-schedule remaining tasks in the local queue.
while let Ok(r) = self.local.pop() {
r.schedule();
}
}
}
/// Steals some items from one queue into another.
fn steal<T>(src: &ConcurrentQueue<T>, dest: &ConcurrentQueue<T>) {
// Half of `src`'s length rounded up.
let mut count = (src.len() + 1) / 2;
if count > 0 {
// Don't steal more than fits into the queue.
if let Some(cap) = dest.capacity() {
count = count.min(cap - dest.len());
}
// Steal tasks.
for _ in 0..count {
if let Ok(t) = src.pop() {
assert!(dest.push(t).is_ok());
} else {
break;
}
}
}
}
/// Runs a closure when dropped.
struct CallOnDrop<F: Fn()>(F);
impl<F: Fn()> Drop for CallOnDrop<F> {
fn drop(&mut self) {
(self.0)();
}
}