1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//! This crate provides traits for working with finite fields.

// Catch documentation errors caused by code changes.
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![deny(broken_intra_doc_links)]
#![forbid(unsafe_code)]

#[cfg(feature = "alloc")]
extern crate alloc;

mod batch;
pub use batch::*;

#[cfg(feature = "derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
pub use ff_derive::PrimeField;

#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub use bitvec::view::BitViewSized;

#[cfg(feature = "bits")]
use bitvec::{array::BitArray, order::Lsb0};
use core::fmt;
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand_core::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};

/// Bit representation of a field element.
#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub type FieldBits<V> = BitArray<Lsb0, V>;

/// This trait represents an element of a field.
pub trait Field:
    Sized
    + Eq
    + Copy
    + Clone
    + Default
    + Send
    + Sync
    + fmt::Debug
    + 'static
    + ConditionallySelectable
    + ConstantTimeEq
    + Add<Output = Self>
    + Sub<Output = Self>
    + Mul<Output = Self>
    + Neg<Output = Self>
    + for<'a> Add<&'a Self, Output = Self>
    + for<'a> Mul<&'a Self, Output = Self>
    + for<'a> Sub<&'a Self, Output = Self>
    + MulAssign
    + AddAssign
    + SubAssign
    + for<'a> MulAssign<&'a Self>
    + for<'a> AddAssign<&'a Self>
    + for<'a> SubAssign<&'a Self>
{
    /// Returns an element chosen uniformly at random using a user-provided RNG.
    fn random(rng: impl RngCore) -> Self;

    /// Returns the zero element of the field, the additive identity.
    fn zero() -> Self;

    /// Returns the one element of the field, the multiplicative identity.
    fn one() -> Self;

    /// Returns true iff this element is zero.
    fn is_zero(&self) -> Choice {
        self.ct_eq(&Self::zero())
    }

    /// Returns true iff this element is zero.
    ///
    /// # Security
    ///
    /// This method provides **no** constant-time guarantees. Implementors of the
    /// `Field` trait **may** optimise this method using non-constant-time logic.
    fn is_zero_vartime(&self) -> bool {
        self.is_zero().into()
    }

    /// Squares this element.
    #[must_use]
    fn square(&self) -> Self;

    /// Cubes this element.
    #[must_use]
    fn cube(&self) -> Self {
        self.square() * self
    }

    /// Doubles this element.
    #[must_use]
    fn double(&self) -> Self;

    /// Computes the multiplicative inverse of this element,
    /// failing if the element is zero.
    fn invert(&self) -> CtOption<Self>;

    /// Returns the square root of the field element, if it is
    /// quadratic residue.
    fn sqrt(&self) -> CtOption<Self>;

    /// Exponentiates `self` by `exp`, where `exp` is a little-endian order
    /// integer exponent.
    ///
    /// **This operation is variable time with respect to the exponent.** If the
    /// exponent is fixed, this operation is effectively constant time.
    fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
        let mut res = Self::one();
        for e in exp.as_ref().iter().rev() {
            for i in (0..64).rev() {
                res = res.square();

                if ((*e >> i) & 1) == 1 {
                    res.mul_assign(self);
                }
            }
        }

        res
    }
}

/// This represents an element of a prime field.
pub trait PrimeField: Field + From<u64> {
    /// The prime field can be converted back and forth into this binary
    /// representation.
    type Repr: Copy + Default + Send + Sync + 'static + AsRef<[u8]> + AsMut<[u8]>;

    /// Interpret a string of numbers as a (congruent) prime field element.
    /// Does not accept unnecessary leading zeroes or a blank string.
    ///
    /// # Security
    ///
    /// This method provides **no** constant-time guarantees.
    fn from_str_vartime(s: &str) -> Option<Self> {
        if s.is_empty() {
            return None;
        }

        if s == "0" {
            return Some(Self::zero());
        }

        let mut res = Self::zero();

        let ten = Self::from(10);

        let mut first_digit = true;

        for c in s.chars() {
            match c.to_digit(10) {
                Some(c) => {
                    if first_digit {
                        if c == 0 {
                            return None;
                        }

                        first_digit = false;
                    }

                    res.mul_assign(&ten);
                    res.add_assign(&Self::from(u64::from(c)));
                }
                None => {
                    return None;
                }
            }
        }

        Some(res)
    }

    /// Attempts to convert a byte representation of a field element into an element of
    /// this prime field, failing if the input is not canonical (is not smaller than the
    /// field's modulus).
    ///
    /// The byte representation is interpreted with the same endianness as elements
    /// returned by [`PrimeField::to_repr`].
    fn from_repr(repr: Self::Repr) -> CtOption<Self>;

    /// Attempts to convert a byte representation of a field element into an element of
    /// this prime field, failing if the input is not canonical (is not smaller than the
    /// field's modulus).
    ///
    /// The byte representation is interpreted with the same endianness as elements
    /// returned by [`PrimeField::to_repr`].
    ///
    /// # Security
    ///
    /// This method provides **no** constant-time guarantees. Implementors of the
    /// `PrimeField` trait **may** optimise this method using non-constant-time logic.
    fn from_repr_vartime(repr: Self::Repr) -> Option<Self> {
        Self::from_repr(repr).into()
    }

    /// Converts an element of the prime field into the standard byte representation for
    /// this field.
    ///
    /// The endianness of the byte representation is implementation-specific. Generic
    /// encodings of field elements should be treated as opaque.
    fn to_repr(&self) -> Self::Repr;

    /// Returns true iff this element is odd.
    fn is_odd(&self) -> Choice;

    /// Returns true iff this element is even.
    #[inline(always)]
    fn is_even(&self) -> Choice {
        !self.is_odd()
    }

    /// How many bits are needed to represent an element of this field.
    const NUM_BITS: u32;

    /// How many bits of information can be reliably stored in the field element.
    ///
    /// This is usually `Self::NUM_BITS - 1`.
    const CAPACITY: u32;

    /// Returns a fixed multiplicative generator of `modulus - 1` order. This element must
    /// also be a quadratic nonresidue.
    ///
    /// It can be calculated using [SageMath] as `GF(modulus).primitive_element()`.
    ///
    /// Implementations of this method MUST ensure that this is the generator used to
    /// derive `Self::root_of_unity`.
    ///
    /// [SageMath]: https://www.sagemath.org/
    fn multiplicative_generator() -> Self;

    /// An integer `s` satisfying the equation `2^s * t = modulus - 1` with `t` odd.
    ///
    /// This is the number of leading zero bits in the little-endian bit representation of
    /// `modulus - 1`.
    const S: u32;

    /// Returns the `2^s` root of unity.
    ///
    /// It can be calculated by exponentiating `Self::multiplicative_generator` by `t`,
    /// where `t = (modulus - 1) >> Self::S`.
    fn root_of_unity() -> Self;
}

/// This represents the bits of an element of a prime field.
#[cfg(feature = "bits")]
#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
pub trait PrimeFieldBits: PrimeField {
    /// The backing store for a bit representation of a prime field element.
    type ReprBits: BitViewSized + Send + Sync;

    /// Converts an element of the prime field into a little-endian sequence of bits.
    fn to_le_bits(&self) -> FieldBits<Self::ReprBits>;

    /// Returns the bits of the field characteristic (the modulus) in little-endian order.
    fn char_le_bits() -> FieldBits<Self::ReprBits>;
}

/// Functions and re-exported crates used by the [`PrimeField`] derive macro.
#[cfg(feature = "derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
pub mod derive {
    pub use crate::arith_impl::*;

    pub use {byteorder, rand_core, subtle};

    #[cfg(feature = "bits")]
    pub use bitvec;
}

#[cfg(feature = "derive")]
mod arith_impl {
    /// Computes `a - (b + borrow)`, returning the result and the new borrow.
    #[inline(always)]
    pub const fn sbb(a: u64, b: u64, borrow: u64) -> (u64, u64) {
        let ret = (a as u128).wrapping_sub((b as u128) + ((borrow >> 63) as u128));
        (ret as u64, (ret >> 64) as u64)
    }

    /// Computes `a + b + carry`, returning the result and the new carry over.
    #[inline(always)]
    pub const fn adc(a: u64, b: u64, carry: u64) -> (u64, u64) {
        let ret = (a as u128) + (b as u128) + (carry as u128);
        (ret as u64, (ret >> 64) as u64)
    }

    /// Computes `a + (b * c) + carry`, returning the result and the new carry over.
    #[inline(always)]
    pub const fn mac(a: u64, b: u64, c: u64, carry: u64) -> (u64, u64) {
        let ret = (a as u128) + ((b as u128) * (c as u128)) + (carry as u128);
        (ret as u64, (ret >> 64) as u64)
    }
}