1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
//! Encodes EVEX instructions. These instructions are those added by the AVX-512 extensions. The
//! EVEX encoding requires a 4-byte prefix:
//!
//! Byte 0: 0x62
//! ┌───┬───┬───┬───┬───┬───┬───┬───┐
//! Byte 1: │ R │ X │ B │ R'│ 0 │ 0 │ m │ m │
//! ├───┼───┼───┼───┼───┼───┼───┼───┤
//! Byte 2: │ W │ v │ v │ v │ v │ 1 │ p │ p │
//! ├───┼───┼───┼───┼───┼───┼───┼───┤
//! Byte 3: │ z │ L'│ L │ b │ V'│ a │ a │ a │
//! └───┴───┴───┴───┴───┴───┴───┴───┘
//!
//! The prefix is then followeded by the opcode byte, the ModR/M byte, and other optional suffixes
//! (e.g. SIB byte, displacements, immediates) based on the instruction (see section 2.6, Intel
//! Software Development Manual, volume 2A).
use super::rex::{encode_modrm, LegacyPrefixes, OpcodeMap};
use super::ByteSink;
use core::ops::RangeInclusive;
/// Constructs an EVEX-encoded instruction using a builder pattern. This approach makes it visually
/// easier to transform something the manual's syntax, `EVEX.256.66.0F38.W1 1F /r` to code:
/// `EvexInstruction::new().length(...).prefix(...).map(...).w(true).opcode(0x1F).reg(...).rm(...)`.
pub struct EvexInstruction {
bits: u32,
opcode: u8,
reg: Register,
rm: Register,
}
/// Because some of the bit flags in the EVEX prefix are reversed and users of `EvexInstruction` may
/// choose to skip setting fields, here we set some sane defaults. Note that:
/// - the first byte is always `0x62` but you will notice it at the end of the default `bits` value
/// implemented--remember the little-endian order
/// - some bits are always set to certain values: bits 10-11 to 0, bit 18 to 1
/// - the other bits set correspond to reversed bits: R, X, B, R' (byte 1), vvvv (byte 2), V' (byte
/// 3).
///
/// See the `default_emission` test for what these defaults are equivalent to (e.g. using RAX,
/// unsetting the W bit, etc.)
impl Default for EvexInstruction {
fn default() -> Self {
Self {
bits: 0x08_7C_F0_62,
opcode: 0,
reg: Register::default(),
rm: Register::default(),
}
}
}
#[allow(non_upper_case_globals)] // This makes it easier to match the bit range names to the manual's names.
impl EvexInstruction {
/// Construct a default EVEX instruction.
pub fn new() -> Self {
Self::default()
}
/// Set the length of the instruction . Note that there are sets of instructions (i.e. rounding,
/// memory broadcast) that modify the same underlying bits--at some point (TODO) we can add a
/// way to set those context bits and verify that both are not used (e.g. rounding AND length).
/// For now, this method is very convenient.
#[inline(always)]
pub fn length(mut self, length: EvexVectorLength) -> Self {
self.write(Self::LL, EvexContext::Other { length }.bits() as u32);
self
}
/// Set the legacy prefix byte of the instruction: None | 66 | F0 | F2 | F3. EVEX instructions
/// pack these into the prefix, not as separate bytes.
#[inline(always)]
pub fn prefix(mut self, prefix: LegacyPrefixes) -> Self {
self.write(Self::pp, prefix.bits() as u32);
self
}
/// Set the opcode map byte of the instruction: None | 0F | 0F38 | 0F3A. EVEX instructions pack
/// these into the prefix, not as separate bytes.
#[inline(always)]
pub fn map(mut self, map: OpcodeMap) -> Self {
self.write(Self::mm, map.bits() as u32);
self
}
/// Set the W bit, typically used to indicate an instruction using 64 bits of an operand (e.g.
/// 64 bit lanes). EVEX packs this bit in the EVEX prefix; previous encodings used the REX
/// prefix.
#[inline(always)]
pub fn w(mut self, w: bool) -> Self {
self.write(Self::W, w as u32);
self
}
/// Set the instruction opcode byte.
#[inline(always)]
pub fn opcode(mut self, opcode: u8) -> Self {
self.opcode = opcode;
self
}
/// Set the register to use for the `reg` bits; many instructions use this as the write operand.
/// Setting this affects both the ModRM byte (`reg` section) and the EVEX prefix (the extension
/// bits for register encodings > 8).
#[inline(always)]
pub fn reg(mut self, reg: impl Into<Register>) -> Self {
self.reg = reg.into();
let r = !(self.reg.0 >> 3) & 1;
let r_ = !(self.reg.0 >> 4) & 1;
self.write(Self::R, r as u32);
self.write(Self::R_, r_ as u32);
self
}
/// Set the mask to use. See section 2.6 in the Intel Software Developer's Manual, volume 2A for
/// more details.
#[allow(dead_code)]
#[inline(always)]
pub fn mask(mut self, mask: EvexMasking) -> Self {
self.write(Self::aaa, mask.aaa_bits() as u32);
self.write(Self::z, mask.z_bit() as u32);
self
}
/// Set the `vvvvv` register; some instructions allow using this as a second, non-destructive
/// source register in 3-operand instructions (e.g. 2 read, 1 write).
#[allow(dead_code)]
#[inline(always)]
pub fn vvvvv(mut self, reg: impl Into<Register>) -> Self {
let reg = reg.into();
self.write(Self::vvvv, !(reg.0 as u32) & 0b1111);
self.write(Self::V_, !(reg.0 as u32 >> 4) & 0b1);
self
}
/// Set the register to use for the `rm` bits; many instructions use this as the "read from
/// register/memory" operand. Currently this does not support memory addressing (TODO).Setting
/// this affects both the ModRM byte (`rm` section) and the EVEX prefix (the extension bits for
/// register encodings > 8).
#[inline(always)]
pub fn rm(mut self, reg: impl Into<Register>) -> Self {
self.rm = reg.into();
let b = !(self.rm.0 >> 3) & 1;
let x = !(self.rm.0 >> 4) & 1;
self.write(Self::X, x as u32);
self.write(Self::B, b as u32);
self
}
/// Emit the EVEX-encoded instruction to the code sink:
/// - first, the 4-byte EVEX prefix;
/// - then, the opcode byte;
/// - finally, the ModR/M byte.
///
/// Eventually this method should support encodings of more than just the reg-reg addressing mode (TODO).
pub fn encode<CS: ByteSink + ?Sized>(&self, sink: &mut CS) {
sink.put4(self.bits);
sink.put1(self.opcode);
sink.put1(encode_modrm(3, self.reg.0 & 7, self.rm.0 & 7));
}
// In order to simplify the encoding of the various bit ranges in the prefix, we specify those
// ranges according to the table below (extracted from the Intel Software Development Manual,
// volume 2A). Remember that, because we pack the 4-byte prefix into a little-endian `u32`, this
// chart should be read from right-to-left, top-to-bottom. Note also that we start ranges at bit
// 8, leaving bits 0-7 for the mandatory `0x62`.
// ┌───┬───┬───┬───┬───┬───┬───┬───┐
// Byte 1: │ R │ X │ B │ R'│ 0 │ 0 │ m │ m │
// ├───┼───┼───┼───┼───┼───┼───┼───┤
// Byte 2: │ W │ v │ v │ v │ v │ 1 │ p │ p │
// ├───┼───┼───┼───┼───┼───┼───┼───┤
// Byte 3: │ z │ L'│ L │ b │ V'│ a │ a │ a │
// └───┴───┴───┴───┴───┴───┴───┴───┘
// Byte 1:
const mm: RangeInclusive<u8> = 8..=9;
const R_: RangeInclusive<u8> = 12..=12;
const B: RangeInclusive<u8> = 13..=13;
const X: RangeInclusive<u8> = 14..=14;
const R: RangeInclusive<u8> = 15..=15;
// Byte 2:
const pp: RangeInclusive<u8> = 16..=17;
const vvvv: RangeInclusive<u8> = 19..=22;
const W: RangeInclusive<u8> = 23..=23;
// Byte 3:
const aaa: RangeInclusive<u8> = 24..=26;
const V_: RangeInclusive<u8> = 27..=27;
#[allow(dead_code)] // Will be used once broadcast and rounding controls are exposed.
const b: RangeInclusive<u8> = 28..=28;
const LL: RangeInclusive<u8> = 29..=30;
const z: RangeInclusive<u8> = 31..=31;
// A convenience method for writing the `value` bits to the given range in `self.bits`.
#[inline]
fn write(&mut self, range: RangeInclusive<u8>, value: u32) {
assert!(ExactSizeIterator::len(&range) > 0);
let size = range.end() - range.start() + 1; // Calculate the number of bits in the range.
let mask: u32 = (1 << size) - 1; // Generate a bit mask.
debug_assert!(
value <= mask,
"The written value should have fewer than {} bits.",
size
);
let mask_complement = !(mask << *range.start()); // Create the bitwise complement for the clear mask.
self.bits &= mask_complement; // Clear the bits in `range`; otherwise the OR below may allow previously-set bits to slip through.
let value = value << *range.start(); // Place the value in the correct location (assumes `value <= mask`).
self.bits |= value; // Modify the bits in `range`.
}
}
/// Describe the register index to use. This wrapper is a type-safe way to pass
/// around the registers defined in `inst/regs.rs`.
#[derive(Copy, Clone, Default)]
pub struct Register(u8);
impl From<u8> for Register {
fn from(reg: u8) -> Self {
debug_assert!(reg < 16);
Self(reg)
}
}
impl Into<u8> for Register {
fn into(self) -> u8 {
self.0
}
}
/// Defines the EVEX context for the `L'`, `L`, and `b` bits (bits 6:4 of EVEX P2 byte). Table 2-36 in
/// section 2.6.10 (Intel Software Development Manual, volume 2A) describes how these bits can be
/// used together for certain classes of instructions; i.e., special care should be taken to ensure
/// that instructions use an applicable correct `EvexContext`. Table 2-39 contains cases where
/// opcodes can result in an #UD.
#[allow(dead_code, missing_docs)] // Rounding and broadcast modes are not yet used.
pub enum EvexContext {
RoundingRegToRegFP {
rc: EvexRoundingControl,
},
NoRoundingFP {
sae: bool,
length: EvexVectorLength,
},
MemoryOp {
broadcast: bool,
length: EvexVectorLength,
},
Other {
length: EvexVectorLength,
},
}
impl Default for EvexContext {
fn default() -> Self {
Self::Other {
length: EvexVectorLength::default(),
}
}
}
impl EvexContext {
/// Encode the `L'`, `L`, and `b` bits (bits 6:4 of EVEX P2 byte) for merging with the P2 byte.
pub fn bits(&self) -> u8 {
match self {
Self::RoundingRegToRegFP { rc } => 0b001 | rc.bits() << 1,
Self::NoRoundingFP { sae, length } => (*sae as u8) | length.bits() << 1,
Self::MemoryOp { broadcast, length } => (*broadcast as u8) | length.bits() << 1,
Self::Other { length } => length.bits() << 1,
}
}
}
/// The EVEX format allows choosing a vector length in the `L'` and `L` bits; see `EvexContext`.
#[allow(dead_code, missing_docs)] // Wider-length vectors are not yet used.
pub enum EvexVectorLength {
V128,
V256,
V512,
}
impl EvexVectorLength {
/// Encode the `L'` and `L` bits for merging with the P2 byte.
fn bits(&self) -> u8 {
match self {
Self::V128 => 0b00,
Self::V256 => 0b01,
Self::V512 => 0b10,
// 0b11 is reserved (#UD).
}
}
}
impl Default for EvexVectorLength {
fn default() -> Self {
Self::V128
}
}
/// The EVEX format allows defining rounding control in the `L'` and `L` bits; see `EvexContext`.
#[allow(dead_code, missing_docs)] // Rounding controls are not yet used.
pub enum EvexRoundingControl {
RNE,
RD,
RU,
RZ,
}
impl EvexRoundingControl {
/// Encode the `L'` and `L` bits for merging with the P2 byte.
fn bits(&self) -> u8 {
match self {
Self::RNE => 0b00,
Self::RD => 0b01,
Self::RU => 0b10,
Self::RZ => 0b11,
}
}
}
/// Defines the EVEX masking behavior; masking support is described in section 2.6.4 of the Intel
/// Software Development Manual, volume 2A.
#[allow(dead_code, missing_docs)] // Masking is not yet used.
pub enum EvexMasking {
None,
Merging { k: u8 },
Zeroing { k: u8 },
}
impl Default for EvexMasking {
fn default() -> Self {
EvexMasking::None
}
}
impl EvexMasking {
/// Encode the `z` bit for merging with the P2 byte.
pub fn z_bit(&self) -> u8 {
match self {
Self::None | Self::Merging { .. } => 0,
Self::Zeroing { .. } => 1,
}
}
/// Encode the `aaa` bits for merging with the P2 byte.
pub fn aaa_bits(&self) -> u8 {
match self {
Self::None => 0b000,
Self::Merging { k } | Self::Zeroing { k } => {
debug_assert!(*k <= 7);
*k
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::isa::x64::inst::regs;
use std::vec::Vec;
// As a sanity test, we verify that the output of `xed-asmparse-main 'vpabsq xmm0{k0},
// xmm1'` matches this EVEX encoding machinery.
#[test]
fn vpabsq() {
let dst = regs::xmm0();
let src = regs::xmm1();
let mut sink0 = Vec::new();
EvexInstruction::new()
.prefix(LegacyPrefixes::_66)
.map(OpcodeMap::_0F38)
.w(true)
.opcode(0x1F)
.reg(dst.to_real_reg().unwrap().hw_enc())
.rm(src.to_real_reg().unwrap().hw_enc())
.length(EvexVectorLength::V128)
.encode(&mut sink0);
assert_eq!(sink0, vec![0x62, 0xf2, 0xfd, 0x08, 0x1f, 0xc1]);
}
/// Verify that the defaults are equivalent to an instruction with a `0x00` opcode using the
/// "0" register (i.e. `rax`), with sane defaults for the various configurable parameters. This
/// test is more interesting than it may appear because some of the parameters have flipped-bit
/// representations (e.g. `vvvvv`) so emitting 0s as a default will not work.
#[test]
fn default_emission() {
let mut sink0 = Vec::new();
EvexInstruction::new().encode(&mut sink0);
let mut sink1 = Vec::new();
EvexInstruction::new()
.length(EvexVectorLength::V128)
.prefix(LegacyPrefixes::None)
.map(OpcodeMap::None)
.w(false)
.opcode(0x00)
.reg(regs::rax().to_real_reg().unwrap().hw_enc())
.rm(regs::rax().to_real_reg().unwrap().hw_enc())
.mask(EvexMasking::None)
.encode(&mut sink1);
assert_eq!(sink0, sink1);
}
}