1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2021 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Requester takes care of requesting erasure chunks for candidates that are pending
//! availability.

use std::{
	collections::{
		hash_map::{Entry, HashMap},
		hash_set::HashSet,
	},
	iter::IntoIterator,
	pin::Pin,
};

use futures::{
	channel::{mpsc, oneshot},
	task::{Context, Poll},
	Stream,
};

use polkadot_node_subsystem::{
	messages::{ChainApiMessage, RuntimeApiMessage},
	overseer, ActivatedLeaf, ActiveLeavesUpdate, LeafStatus,
};
use polkadot_node_subsystem_util::runtime::{get_occupied_cores, RuntimeInfo};
use polkadot_primitives::v2::{CandidateHash, Hash, OccupiedCore, SessionIndex};

use super::{FatalError, Metrics, Result, LOG_TARGET};

#[cfg(test)]
mod tests;

/// Cache for session information.
mod session_cache;
use session_cache::SessionCache;

/// A task fetching a particular chunk.
mod fetch_task;
use fetch_task::{FetchTask, FetchTaskConfig, FromFetchTask};

/// Requester takes care of requesting erasure chunks from backing groups and stores them in the
/// av store.
///
/// It implements a stream that needs to be advanced for it making progress.
pub struct Requester {
	/// Candidates we need to fetch our chunk for.
	///
	/// We keep those around as long as a candidate is pending availability on some leaf, so we
	/// won't fetch chunks multiple times.
	///
	/// We remove them on failure, so we get retries on the next block still pending availability.
	fetches: HashMap<CandidateHash, FetchTask>,

	/// Localized information about sessions we are currently interested in.
	session_cache: SessionCache,

	/// Sender to be cloned for `FetchTask`s.
	tx: mpsc::Sender<FromFetchTask>,

	/// Receive messages from `FetchTask`.
	rx: mpsc::Receiver<FromFetchTask>,

	/// Prometheus Metrics
	metrics: Metrics,
}

#[overseer::contextbounds(AvailabilityDistribution, prefix = self::overseer)]
impl Requester {
	/// How many ancestors of the leaf should we consider along with it.
	pub(crate) const LEAF_ANCESTRY_LEN_WITHIN_SESSION: usize = 3;

	/// Create a new `Requester`.
	///
	/// You must feed it with `ActiveLeavesUpdate` via `update_fetching_heads` and make it progress
	/// by advancing the stream.
	pub fn new(metrics: Metrics) -> Self {
		let (tx, rx) = mpsc::channel(1);
		Requester { fetches: HashMap::new(), session_cache: SessionCache::new(), tx, rx, metrics }
	}

	/// Update heads that need availability distribution.
	///
	/// For all active heads we will be fetching our chunks for availability distribution.
	pub async fn update_fetching_heads<Context>(
		&mut self,
		ctx: &mut Context,
		runtime: &mut RuntimeInfo,
		update: ActiveLeavesUpdate,
	) -> Result<()> {
		gum::trace!(target: LOG_TARGET, ?update, "Update fetching heads");
		let ActiveLeavesUpdate { activated, deactivated } = update;
		// Stale leaves happen after a reversion - we don't want to re-run availability there.
		if let Some(leaf) = activated.filter(|leaf| leaf.status == LeafStatus::Fresh) {
			// Order important! We need to handle activated, prior to deactivated, otherwise we might
			// cancel still needed jobs.
			self.start_requesting_chunks(ctx, runtime, leaf).await?;
		}

		self.stop_requesting_chunks(deactivated.into_iter());
		Ok(())
	}

	/// Start requesting chunks for newly imported head.
	///
	/// This will also request [`SESSION_ANCESTRY_LEN`] leaf ancestors from the same session
	/// and start requesting chunks for them too.
	async fn start_requesting_chunks<Context>(
		&mut self,
		ctx: &mut Context,
		runtime: &mut RuntimeInfo,
		new_head: ActivatedLeaf,
	) -> Result<()> {
		let sender = &mut ctx.sender().clone();
		let ActivatedLeaf { hash: leaf, .. } = new_head;
		let (leaf_session_index, ancestors_in_session) = get_block_ancestors_in_same_session(
			sender,
			runtime,
			leaf,
			Self::LEAF_ANCESTRY_LEN_WITHIN_SESSION,
		)
		.await?;
		// Also spawn or bump tasks for candidates in ancestry in the same session.
		for hash in std::iter::once(leaf).chain(ancestors_in_session) {
			let cores = get_occupied_cores(sender, hash).await?;
			gum::trace!(
				target: LOG_TARGET,
				occupied_cores = ?cores,
				"Query occupied core"
			);
			// Important:
			// We mark the whole ancestry as live in the **leaf** hash, so we don't need to track
			// any tasks separately.
			//
			// The next time the subsystem receives leaf update, some of spawned task will be bumped
			// to be live in fresh relay parent, while some might get dropped due to the current leaf
			// being deactivated.
			self.add_cores(ctx, runtime, leaf, leaf_session_index, cores).await?;
		}

		Ok(())
	}

	/// Stop requesting chunks for obsolete heads.
	///
	fn stop_requesting_chunks(&mut self, obsolete_leaves: impl Iterator<Item = Hash>) {
		let obsolete_leaves: HashSet<_> = obsolete_leaves.collect();
		self.fetches.retain(|_, task| {
			task.remove_leaves(&obsolete_leaves);
			task.is_live()
		})
	}

	/// Add candidates corresponding for a particular relay parent.
	///
	/// Starting requests where necessary.
	///
	/// Note: The passed in `leaf` is not the same as `CandidateDescriptor::relay_parent` in the
	/// given cores. The latter is the `relay_parent` this candidate considers its parent, while the
	/// passed in leaf might be some later block where the candidate is still pending availability.
	async fn add_cores<Context>(
		&mut self,
		context: &mut Context,
		runtime: &mut RuntimeInfo,
		leaf: Hash,
		leaf_session_index: SessionIndex,
		cores: impl IntoIterator<Item = OccupiedCore>,
	) -> Result<()> {
		for core in cores {
			match self.fetches.entry(core.candidate_hash) {
				Entry::Occupied(mut e) =>
				// Just book keeping - we are already requesting that chunk:
				{
					e.get_mut().add_leaf(leaf);
				},
				Entry::Vacant(e) => {
					let tx = self.tx.clone();
					let metrics = self.metrics.clone();

					let task_cfg = self
						.session_cache
						.with_session_info(
							context,
							runtime,
							// We use leaf here, the relay_parent must be in the same session as the
							// leaf. This is guaranteed by runtime which ensures that cores are cleared
							// at session boundaries. At the same time, only leaves are guaranteed to
							// be fetchable by the state trie.
							leaf,
							leaf_session_index,
							|info| FetchTaskConfig::new(leaf, &core, tx, metrics, info),
						)
						.await
						.map_err(|err| {
							gum::warn!(
								target: LOG_TARGET,
								error = ?err,
								"Failed to spawn a fetch task"
							);
							err
						});

					if let Ok(Some(task_cfg)) = task_cfg {
						e.insert(FetchTask::start(task_cfg, context).await?);
					}
					// Not a validator, nothing to do.
				},
			}
		}
		Ok(())
	}
}

impl Stream for Requester {
	type Item = overseer::AvailabilityDistributionOutgoingMessages;

	fn poll_next(mut self: Pin<&mut Self>, ctx: &mut Context) -> Poll<Option<Self::Item>> {
		loop {
			match Pin::new(&mut self.rx).poll_next(ctx) {
				Poll::Ready(Some(FromFetchTask::Message(m))) => return Poll::Ready(Some(m)),
				Poll::Ready(Some(FromFetchTask::Concluded(Some(bad_boys)))) => {
					self.session_cache.report_bad_log(bad_boys);
					continue
				},
				Poll::Ready(Some(FromFetchTask::Concluded(None))) => continue,
				Poll::Ready(Some(FromFetchTask::Failed(candidate_hash))) => {
					// Make sure we retry on next block still pending availability.
					self.fetches.remove(&candidate_hash);
				},
				Poll::Ready(None) => return Poll::Ready(None),
				Poll::Pending => return Poll::Pending,
			}
		}
	}
}

/// Requests up to `limit` ancestor hashes of relay parent in the same session.
///
/// Also returns session index of the `head`.
async fn get_block_ancestors_in_same_session<Sender>(
	sender: &mut Sender,
	runtime: &mut RuntimeInfo,
	head: Hash,
	limit: usize,
) -> Result<(SessionIndex, Vec<Hash>)>
where
	Sender:
		overseer::SubsystemSender<RuntimeApiMessage> + overseer::SubsystemSender<ChainApiMessage>,
{
	// The order is parent, grandparent, ...
	//
	// `limit + 1` since a session index for the last element in ancestry
	// is obtained through its parent. It always gets truncated because
	// `session_ancestry_len` can only be incremented `ancestors.len() - 1` times.
	let mut ancestors = get_block_ancestors(sender, head, limit + 1).await?;
	let mut ancestors_iter = ancestors.iter();

	// `head` is the child of the first block in `ancestors`, request its session index.
	let head_session_index = match ancestors_iter.next() {
		Some(parent) => runtime.get_session_index_for_child(sender, *parent).await?,
		None => {
			// No first element, i.e. empty.
			return Ok((0, ancestors))
		},
	};

	let mut session_ancestry_len = 0;
	// The first parent is skipped.
	for parent in ancestors_iter {
		// Parent is the i-th ancestor, request session index for its child -- (i-1)th element.
		let session_index = runtime.get_session_index_for_child(sender, *parent).await?;
		if session_index == head_session_index {
			session_ancestry_len += 1;
		} else {
			break
		}
	}

	// Drop the rest.
	ancestors.truncate(session_ancestry_len);

	Ok((head_session_index, ancestors))
}

/// Request up to `limit` ancestor hashes of relay parent from the Chain API.
async fn get_block_ancestors<Sender>(
	sender: &mut Sender,
	relay_parent: Hash,
	limit: usize,
) -> Result<Vec<Hash>>
where
	Sender: overseer::SubsystemSender<ChainApiMessage>,
{
	let (tx, rx) = oneshot::channel();
	sender
		.send_message(ChainApiMessage::Ancestors {
			hash: relay_parent,
			k: limit,
			response_channel: tx,
		})
		.await;

	let ancestors = rx
		.await
		.map_err(FatalError::ChainApiSenderDropped)?
		.map_err(FatalError::ChainApi)?;
	Ok(ancestors)
}