1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
//! # `VMExternRef`
//!
//! `VMExternRef` is a reference-counted box for any kind of data that is
//! external and opaque to running Wasm. Sometimes it might hold a Wasmtime
//! thing, other times it might hold something from a Wasmtime embedder and is
//! opaque even to us. It is morally equivalent to `Rc<dyn Any>` in Rust, but
//! additionally always fits in a pointer-sized word. `VMExternRef` is
//! non-nullable, but `Option<VMExternRef>` is a null pointer.
//!
//! The one part of `VMExternRef` that can't ever be opaque to us is the
//! reference count. Even when we don't know what's inside an `VMExternRef`, we
//! need to be able to manipulate its reference count as we add and remove
//! references to it. And we need to do this from compiled Wasm code, so it must
//! be `repr(C)`!
//!
//! ## Memory Layout
//!
//! `VMExternRef` itself is just a pointer to an `VMExternData`, which holds the
//! opaque, boxed value, its reference count, and its vtable pointer.
//!
//! The `VMExternData` struct is *preceded* by the dynamically-sized value boxed
//! up and referenced by one or more `VMExternRef`s:
//!
//! ```text
//!      ,-------------------------------------------------------.
//!      |                                                       |
//!      V                                                       |
//!     +----------------------------+-----------+-----------+   |
//!     | dynamically-sized value... | ref_count | value_ptr |---'
//!     +----------------------------+-----------+-----------+
//!                                  | VMExternData          |
//!                                  +-----------------------+
//!                                   ^
//! +-------------+                   |
//! | VMExternRef |-------------------+
//! +-------------+                   |
//!                                   |
//! +-------------+                   |
//! | VMExternRef |-------------------+
//! +-------------+                   |
//!                                   |
//!   ...                            ===
//!                                   |
//! +-------------+                   |
//! | VMExternRef |-------------------'
//! +-------------+
//! ```
//!
//! The `value_ptr` member always points backwards to the start of the
//! dynamically-sized value (which is also the start of the heap allocation for
//! this value-and-`VMExternData` pair). Because it is a `dyn` pointer, it is
//! fat, and also points to the value's `Any` vtable.
//!
//! The boxed value and the `VMExternRef` footer are held a single heap
//! allocation. The layout described above is used to make satisfying the
//! value's alignment easy: we just need to ensure that the heap allocation used
//! to hold everything satisfies its alignment. It also ensures that we don't
//! need a ton of excess padding between the `VMExternData` and the value for
//! values with large alignment.
//!
//! ## Reference Counting, Wasm Functions, and Garbage Collection
//!
//! For host VM code, we use plain reference counting, where cloning increments
//! the reference count, and dropping decrements it. We can avoid many of the
//! on-stack increment/decrement operations that typically plague the
//! performance of reference counting via Rust's ownership and borrowing system.
//! Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
//! either avoids the reference count increment or delays it until if/when the
//! `VMExternRef` is cloned.
//!
//! When passing a `VMExternRef` into compiled Wasm code, we don't want to do
//! reference count mutations for every compiled `local.{get,set}`, nor for
//! every function call. Therefore, we use a variation of **deferred reference
//! counting**, where we only mutate reference counts when storing
//! `VMExternRef`s somewhere that outlives the activation: into a global or
//! table. Simultaneously, we over-approximate the set of `VMExternRef`s that
//! are inside Wasm function activations. Periodically, we walk the stack at GC
//! safe points, and use stack map information to precisely identify the set of
//! `VMExternRef`s inside Wasm activations. Then we take the difference between
//! this precise set and our over-approximation, and decrement the reference
//! count for each of the `VMExternRef`s that are in our over-approximation but
//! not in the precise set. Finally, the over-approximation is replaced with the
//! precise set.
//!
//! The `VMExternRefActivationsTable` implements the over-approximized set of
//! `VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
//! passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
//! compiled Wasm function logically "borrows" the `VMExternRef` from the
//! table. Similarly, `global.get` and `table.get` operations clone the gotten
//! `VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
//! reference out of the table.
//!
//! When a `VMExternRef` is returned to host code from a Wasm function, the host
//! increments the reference count (because the reference is logically
//! "borrowed" from the `VMExternRefActivationsTable` and the reference count
//! from the table will be dropped at the next GC).
//!
//! For more general information on deferred reference counting, see *An
//! Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
//! <https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf>

use std::alloc::Layout;
use std::any::Any;
use std::cell::UnsafeCell;
use std::cmp;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::sync::atomic::{self, AtomicUsize, Ordering};
use wasmtime_environ::StackMap;

/// An external reference to some opaque data.
///
/// `VMExternRef`s dereference to their underlying opaque data as `dyn Any`.
///
/// Unlike the `externref` in the Wasm spec, `VMExternRef`s are non-nullable,
/// and always point to a valid value. You may use `Option<VMExternRef>` to
/// represent nullable references, and `Option<VMExternRef>` is guaranteed to
/// have the same size and alignment as a raw pointer, with `None` represented
/// with the null pointer.
///
/// `VMExternRef`s are reference counted, so cloning is a cheap, shallow
/// operation. It also means they are inherently shared, so you may not get a
/// mutable, exclusive reference to their inner contents, only a shared,
/// immutable reference. You may use interior mutability with `RefCell` or
/// `Mutex` to work around this restriction, if necessary.
///
/// `VMExternRef`s have pointer-equality semantics, not structural-equality
/// semantics. Given two `VMExternRef`s `a` and `b`, `a == b` only if `a` and
/// `b` point to the same allocation. `a` and `b` are considered not equal, even
/// if `a` and `b` are two different identical copies of the same data, if they
/// are in two different allocations. The hashing and ordering implementations
/// also only operate on the pointer.
///
/// # Example
///
/// ```
/// # fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use std::cell::RefCell;
/// use wasmtime_runtime::VMExternRef;
///
/// // Open a file. Wasm doesn't know about files, but we can let Wasm instances
/// // work with files via opaque `externref` handles.
/// let file = std::fs::File::create("some/file/path")?;
///
/// // Wrap the file up as an `VMExternRef` that can be passed to Wasm.
/// let extern_ref_to_file = VMExternRef::new(file);
///
/// // `VMExternRef`s dereference to `dyn Any`, so you can use `Any` methods to
/// // perform runtime type checks and downcasts.
///
/// assert!(extern_ref_to_file.is::<std::fs::File>());
/// assert!(!extern_ref_to_file.is::<String>());
///
/// if let Some(mut file) = extern_ref_to_file.downcast_ref::<std::fs::File>() {
///     use std::io::Write;
///     writeln!(&mut file, "Hello, `VMExternRef`!")?;
/// }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[repr(transparent)]
pub struct VMExternRef(NonNull<VMExternData>);

// Data contained is always Send+Sync so these should be safe.
unsafe impl Send for VMExternRef {}
unsafe impl Sync for VMExternRef {}

#[repr(C)]
pub(crate) struct VMExternData {
    // Implicit, dynamically-sized member that always preceded an
    // `VMExternData`.
    //
    // value: [u8],
    //
    /// The reference count for this `VMExternData` and value. When it reaches
    /// zero, we can safely destroy the value and free this heap
    /// allocation. This is an `UnsafeCell`, rather than plain `Cell`, because
    /// it can be modified by compiled Wasm code.
    ///
    /// Note: this field's offset must be kept in sync with
    /// `wasmtime_environ::VMOffsets::vm_extern_data_ref_count()` which is
    /// currently always zero.
    ref_count: AtomicUsize,

    /// Always points to the implicit, dynamically-sized `value` member that
    /// precedes this `VMExternData`.
    value_ptr: NonNull<dyn Any + Send + Sync>,
}

impl Clone for VMExternRef {
    #[inline]
    fn clone(&self) -> VMExternRef {
        self.extern_data().increment_ref_count();
        VMExternRef(self.0)
    }
}

impl Drop for VMExternRef {
    #[inline]
    fn drop(&mut self) {
        let data = self.extern_data();

        // Note that the memory orderings here also match the standard library
        // itself. Documentation is more available in the implementation of
        // `Arc`, but the general idea is that this is a special pattern allowed
        // by the C standard with atomic orderings where we "release" for all
        // the decrements and only the final decrementer performs an acquire
        // fence. This properly ensures that the final thread, which actually
        // destroys the data, sees all the updates from all other threads.
        if data.ref_count.fetch_sub(1, Ordering::Release) != 1 {
            return;
        }
        atomic::fence(Ordering::Acquire);

        // Drop our live reference to `data` before we drop it itself.
        drop(data);
        unsafe {
            VMExternData::drop_and_dealloc(self.0);
        }
    }
}

impl VMExternData {
    /// Get the `Layout` for a value with the given size and alignment, and the
    /// offset within that layout where the `VMExternData` footer resides.
    ///
    /// This doesn't take a `value: &T` because `VMExternRef::new_with` hasn't
    /// constructed a `T` value yet, and it isn't generic over `T` because
    /// `VMExternData::drop_and_dealloc` doesn't know what `T` to use, and has
    /// to use `std::mem::{size,align}_of_val` instead.
    unsafe fn layout_for(value_size: usize, value_align: usize) -> (Layout, usize) {
        let extern_data_size = mem::size_of::<VMExternData>();
        let extern_data_align = mem::align_of::<VMExternData>();

        let value_and_padding_size = round_up_to_align(value_size, extern_data_align).unwrap();

        let alloc_align = std::cmp::max(value_align, extern_data_align);
        let alloc_size = value_and_padding_size + extern_data_size;

        debug_assert!(Layout::from_size_align(alloc_size, alloc_align).is_ok());
        (
            Layout::from_size_align_unchecked(alloc_size, alloc_align),
            value_and_padding_size,
        )
    }

    /// Drop the inner value and then free this `VMExternData` heap allocation.
    pub(crate) unsafe fn drop_and_dealloc(mut data: NonNull<VMExternData>) {
        // Note: we introduce a block scope so that we drop the live
        // reference to the data before we free the heap allocation it
        // resides within after this block.
        let (alloc_ptr, layout) = {
            let data = data.as_mut();
            debug_assert_eq!(data.ref_count.load(Ordering::SeqCst), 0);

            // Same thing, but for the dropping the reference to `value` before
            // we drop it itself.
            let (layout, _) = {
                let value = data.value_ptr.as_ref();
                Self::layout_for(mem::size_of_val(value), mem::align_of_val(value))
            };

            ptr::drop_in_place(data.value_ptr.as_ptr());
            let alloc_ptr = data.value_ptr.cast::<u8>();

            (alloc_ptr, layout)
        };

        ptr::drop_in_place(data.as_ptr());
        std::alloc::dealloc(alloc_ptr.as_ptr(), layout);
    }

    #[inline]
    fn increment_ref_count(&self) {
        // This is only using during cloning operations, and like the standard
        // library we use `Relaxed` here. The rationale is better documented in
        // libstd's implementation of `Arc`, but the general gist is that we're
        // creating a new pointer for our own thread, so there's no need to have
        // any synchronization with orderings. The synchronization with other
        // threads with respect to orderings happens when the pointer is sent to
        // another thread.
        self.ref_count.fetch_add(1, Ordering::Relaxed);
    }
}

#[inline]
fn round_up_to_align(n: usize, align: usize) -> Option<usize> {
    debug_assert!(align.is_power_of_two());
    let align_minus_one = align - 1;
    Some(n.checked_add(align_minus_one)? & !align_minus_one)
}

impl VMExternRef {
    /// Wrap the given value inside an `VMExternRef`.
    pub fn new<T>(value: T) -> VMExternRef
    where
        T: 'static + Any + Send + Sync,
    {
        VMExternRef::new_with(|| value)
    }

    /// Construct a new `VMExternRef` in place by invoking `make_value`.
    pub fn new_with<T>(make_value: impl FnOnce() -> T) -> VMExternRef
    where
        T: 'static + Any + Send + Sync,
    {
        unsafe {
            let (layout, footer_offset) =
                VMExternData::layout_for(mem::size_of::<T>(), mem::align_of::<T>());

            let alloc_ptr = std::alloc::alloc(layout);
            let alloc_ptr = NonNull::new(alloc_ptr).unwrap_or_else(|| {
                std::alloc::handle_alloc_error(layout);
            });

            let value_ptr = alloc_ptr.cast::<T>();
            ptr::write(value_ptr.as_ptr(), make_value());

            let extern_data_ptr =
                alloc_ptr.cast::<u8>().as_ptr().add(footer_offset) as *mut VMExternData;
            ptr::write(
                extern_data_ptr,
                VMExternData {
                    ref_count: AtomicUsize::new(1),
                    // Cast from `*mut T` to `*mut dyn Any` here.
                    value_ptr: NonNull::new_unchecked(value_ptr.as_ptr()),
                },
            );

            VMExternRef(NonNull::new_unchecked(extern_data_ptr))
        }
    }

    /// Turn this `VMExternRef` into a raw, untyped pointer.
    ///
    /// Unlike `into_raw`, this does not consume and forget `self`. It is *not*
    /// safe to use `from_raw` on pointers returned from this method; only use
    /// `clone_from_raw`!
    ///
    ///  Nor does this method increment the reference count. You must ensure
    ///  that `self` (or some other clone of `self`) stays alive until
    ///  `clone_from_raw` is called.
    #[inline]
    pub fn as_raw(&self) -> *mut u8 {
        let ptr = self.0.cast::<u8>().as_ptr();
        ptr
    }

    /// Consume this `VMExternRef` into a raw, untyped pointer.
    ///
    /// # Safety
    ///
    /// This method forgets self, so it is possible to create a leak of the
    /// underlying reference counted data if not used carefully.
    ///
    /// Use `from_raw` to recreate the `VMExternRef`.
    pub unsafe fn into_raw(self) -> *mut u8 {
        let ptr = self.0.cast::<u8>().as_ptr();
        std::mem::forget(self);
        ptr
    }

    /// Recreate a `VMExternRef` from a pointer returned from a previous call to
    /// `as_raw`.
    ///
    /// # Safety
    ///
    /// Unlike `clone_from_raw`, this does not increment the reference count of the
    /// underlying data.  It is not safe to continue to use the pointer passed to this
    /// function.
    pub unsafe fn from_raw(ptr: *mut u8) -> Self {
        debug_assert!(!ptr.is_null());
        VMExternRef(NonNull::new_unchecked(ptr).cast())
    }

    /// Recreate a `VMExternRef` from a pointer returned from a previous call to
    /// `as_raw`.
    ///
    /// # Safety
    ///
    /// Wildly unsafe to use with anything other than the result of a previous
    /// `as_raw` call!
    ///
    /// Additionally, it is your responsibility to ensure that this raw
    /// `VMExternRef`'s reference count has not dropped to zero. Failure to do
    /// so will result in use after free!
    pub unsafe fn clone_from_raw(ptr: *mut u8) -> Self {
        debug_assert!(!ptr.is_null());
        let x = VMExternRef(NonNull::new_unchecked(ptr).cast());
        x.extern_data().increment_ref_count();
        x
    }

    /// Get the strong reference count for this `VMExternRef`.
    ///
    /// Note that this loads with a `SeqCst` ordering to synchronize with other
    /// threads.
    pub fn strong_count(&self) -> usize {
        self.extern_data().ref_count.load(Ordering::SeqCst)
    }

    #[inline]
    fn extern_data(&self) -> &VMExternData {
        unsafe { self.0.as_ref() }
    }
}

/// Methods that would normally be trait implementations, but aren't to avoid
/// potential footguns around `VMExternRef`'s pointer-equality semantics.
///
/// Note that none of these methods are on `&self`, they all require a
/// fully-qualified `VMExternRef::foo(my_ref)` invocation.
impl VMExternRef {
    /// Check whether two `VMExternRef`s point to the same inner allocation.
    ///
    /// Note that this uses pointer-equality semantics, not structural-equality
    /// semantics, and so only pointers are compared, and doesn't use any `Eq`
    /// or `PartialEq` implementation of the pointed-to values.
    #[inline]
    pub fn eq(a: &Self, b: &Self) -> bool {
        ptr::eq(a.0.as_ptr(), b.0.as_ptr())
    }

    /// Hash a given `VMExternRef`.
    ///
    /// Note that this just hashes the pointer to the inner value, it does *not*
    /// use the inner value's `Hash` implementation (if any).
    #[inline]
    pub fn hash<H>(externref: &Self, hasher: &mut H)
    where
        H: Hasher,
    {
        ptr::hash(externref.0.as_ptr(), hasher);
    }

    /// Compare two `VMExternRef`s.
    ///
    /// Note that this uses pointer-equality semantics, not structural-equality
    /// semantics, and so only pointers are compared, and doesn't use any `Cmp`
    /// or `PartialCmp` implementation of the pointed-to values.
    #[inline]
    pub fn cmp(a: &Self, b: &Self) -> cmp::Ordering {
        let a = a.0.as_ptr() as usize;
        let b = b.0.as_ptr() as usize;
        a.cmp(&b)
    }
}

impl Deref for VMExternRef {
    type Target = dyn Any;

    fn deref(&self) -> &dyn Any {
        unsafe { self.extern_data().value_ptr.as_ref() }
    }
}

/// A wrapper around a `VMExternRef` that implements `Eq` and `Hash` with
/// pointer semantics.
///
/// We use this so that we can morally put `VMExternRef`s inside of `HashSet`s
/// even though they don't implement `Eq` and `Hash` to avoid foot guns.
#[derive(Clone, Debug)]
struct VMExternRefWithTraits(VMExternRef);

impl Hash for VMExternRefWithTraits {
    fn hash<H>(&self, hasher: &mut H)
    where
        H: Hasher,
    {
        VMExternRef::hash(&self.0, hasher)
    }
}

impl PartialEq for VMExternRefWithTraits {
    fn eq(&self, other: &Self) -> bool {
        VMExternRef::eq(&self.0, &other.0)
    }
}

impl Eq for VMExternRefWithTraits {}

type TableElem = UnsafeCell<Option<VMExternRef>>;

/// A table that over-approximizes the set of `VMExternRef`s that any Wasm
/// activation on this thread is currently using.
///
/// Under the covers, this is a simple bump allocator that allows duplicate
/// entries. Deduplication happens at GC time.
#[repr(C)] // `alloc` must be the first member, it's accessed from JIT code.
pub struct VMExternRefActivationsTable {
    /// Structures used to perform fast bump allocation of storage of externref
    /// values.
    ///
    /// This is the only member of this structure accessed from JIT code.
    alloc: VMExternRefTableAlloc,

    /// When unioned with `chunk`, this is an over-approximation of the GC roots
    /// on the stack, inside Wasm frames.
    ///
    /// This is used by slow-path insertion, and when a GC cycle finishes, is
    /// re-initialized to the just-discovered precise set of stack roots (which
    /// immediately becomes an over-approximation again as soon as Wasm runs and
    /// potentially drops references).
    over_approximated_stack_roots: HashSet<VMExternRefWithTraits>,

    /// The precise set of on-stack, inside-Wasm GC roots that we discover via
    /// walking the stack and interpreting stack maps.
    ///
    /// This is *only* used inside the `gc` function, and is empty otherwise. It
    /// is just part of this struct so that we can reuse the allocation, rather
    /// than create a new hash set every GC.
    precise_stack_roots: HashSet<VMExternRefWithTraits>,

    /// A pointer to the youngest host stack frame before we called
    /// into Wasm for the first time. When walking the stack in garbage
    /// collection, if we don't find this frame, then we failed to walk every
    /// Wasm stack frame, which means we failed to find all on-stack,
    /// inside-a-Wasm-frame roots, and doing a GC could lead to freeing one of
    /// those missed roots, and use after free.
    stack_canary: Option<usize>,

    /// A debug-only field for asserting that we are in a region of code where
    /// GC is okay to preform.
    #[cfg(debug_assertions)]
    gc_okay: bool,
}

#[repr(C)] // This is accessed from JIT code.
struct VMExternRefTableAlloc {
    /// Bump-allocation finger within the `chunk`.
    ///
    /// NB: this is an `UnsafeCell` because it is written to by compiled Wasm
    /// code.
    next: UnsafeCell<NonNull<TableElem>>,

    /// Pointer to just after the `chunk`.
    ///
    /// This is *not* within the current chunk and therefore is not a valid
    /// place to insert a reference!
    end: NonNull<TableElem>,

    /// Bump allocation chunk that stores fast-path insertions.
    ///
    /// This is not accessed from JIT code.
    chunk: Box<[TableElem]>,
}

// This gets around the usage of `UnsafeCell` throughout the internals of this
// allocator, but the storage should all be Send/Sync and synchronization isn't
// necessary since operations require `&mut self`.
unsafe impl Send for VMExternRefTableAlloc {}
unsafe impl Sync for VMExternRefTableAlloc {}

fn _assert_send_sync() {
    fn _assert<T: Send + Sync>() {}
    _assert::<VMExternRefActivationsTable>();
    _assert::<VMExternRef>();
}

impl VMExternRefActivationsTable {
    const CHUNK_SIZE: usize = 4096 / mem::size_of::<usize>();

    /// Create a new `VMExternRefActivationsTable`.
    pub fn new() -> Self {
        // Start with an empty chunk in case this activations table isn't used.
        // This means that there's no space in the bump-allocation area which
        // will force any path trying to use this to the slow gc path. The first
        // time this happens, though, the slow gc path will allocate a new chunk
        // for actual fast-bumping.
        let mut chunk: Box<[TableElem]> = Box::new([]);
        let next = chunk.as_mut_ptr();
        let end = unsafe { next.add(chunk.len()) };

        VMExternRefActivationsTable {
            alloc: VMExternRefTableAlloc {
                next: UnsafeCell::new(NonNull::new(next).unwrap()),
                end: NonNull::new(end).unwrap(),
                chunk,
            },
            over_approximated_stack_roots: HashSet::new(),
            precise_stack_roots: HashSet::new(),
            stack_canary: None,
            #[cfg(debug_assertions)]
            gc_okay: true,
        }
    }

    fn new_chunk(size: usize) -> Box<[UnsafeCell<Option<VMExternRef>>]> {
        assert!(size >= Self::CHUNK_SIZE);
        (0..size).map(|_| UnsafeCell::new(None)).collect()
    }

    /// Get the available capacity in the bump allocation chunk.
    #[inline]
    pub fn bump_capacity_remaining(&self) -> usize {
        let end = self.alloc.end.as_ptr() as usize;
        let next = unsafe { *self.alloc.next.get() };
        end - next.as_ptr() as usize
    }

    /// Try and insert a `VMExternRef` into this table.
    ///
    /// This is a fast path that only succeeds when the bump chunk has the
    /// capacity for the requested insertion.
    ///
    /// If the insertion fails, then the `VMExternRef` is given back. Callers
    /// may attempt a GC to free up space and try again, or may call
    /// `insert_slow_path` to infallibly insert the reference (potentially
    /// allocating additional space in the table to hold it).
    #[inline]
    pub fn try_insert(&mut self, externref: VMExternRef) -> Result<(), VMExternRef> {
        unsafe {
            let next = *self.alloc.next.get();
            if next == self.alloc.end {
                return Err(externref);
            }

            debug_assert!(
                (*next.as_ref().get()).is_none(),
                "slots >= the `next` bump finger are always `None`"
            );
            ptr::write(next.as_ptr(), UnsafeCell::new(Some(externref)));

            let next = NonNull::new_unchecked(next.as_ptr().add(1));
            debug_assert!(next <= self.alloc.end);
            *self.alloc.next.get() = next;

            Ok(())
        }
    }

    /// Insert a reference into the table, falling back on a GC to clear up
    /// space if the table is already full.
    ///
    /// # Unsafety
    ///
    /// The same as `gc`.
    #[inline]
    pub unsafe fn insert_with_gc(
        &mut self,
        externref: VMExternRef,
        module_info_lookup: &dyn ModuleInfoLookup,
    ) {
        #[cfg(debug_assertions)]
        assert!(self.gc_okay);

        if let Err(externref) = self.try_insert(externref) {
            self.gc_and_insert_slow(externref, module_info_lookup);
        }
    }

    #[inline(never)]
    unsafe fn gc_and_insert_slow(
        &mut self,
        externref: VMExternRef,
        module_info_lookup: &dyn ModuleInfoLookup,
    ) {
        gc(module_info_lookup, self);

        // Might as well insert right into the hash set, rather than the bump
        // chunk, since we are already on a slow path and we get de-duplication
        // this way.
        self.over_approximated_stack_roots
            .insert(VMExternRefWithTraits(externref));
    }

    /// Insert a reference into the table, without ever performing GC.
    #[inline]
    pub fn insert_without_gc(&mut self, externref: VMExternRef) {
        if let Err(externref) = self.try_insert(externref) {
            self.insert_slow_without_gc(externref);
        }
    }

    #[inline(never)]
    fn insert_slow_without_gc(&mut self, externref: VMExternRef) {
        self.over_approximated_stack_roots
            .insert(VMExternRefWithTraits(externref));
    }

    fn num_filled_in_bump_chunk(&self) -> usize {
        let next = unsafe { *self.alloc.next.get() };
        let bytes_unused = (self.alloc.end.as_ptr() as usize) - (next.as_ptr() as usize);
        let slots_unused = bytes_unused / mem::size_of::<TableElem>();
        self.alloc.chunk.len().saturating_sub(slots_unused)
    }

    fn elements(&self, mut f: impl FnMut(&VMExternRef)) {
        for elem in self.over_approximated_stack_roots.iter() {
            f(&elem.0);
        }

        // The bump chunk is not all the way full, so we only iterate over its
        // filled-in slots.
        let num_filled = self.num_filled_in_bump_chunk();
        for slot in self.alloc.chunk.iter().take(num_filled) {
            if let Some(elem) = unsafe { &*slot.get() } {
                f(elem);
            }
        }
    }

    fn insert_precise_stack_root(
        precise_stack_roots: &mut HashSet<VMExternRefWithTraits>,
        root: NonNull<VMExternData>,
    ) {
        let root = unsafe { VMExternRef::clone_from_raw(root.as_ptr().cast()) };
        precise_stack_roots.insert(VMExternRefWithTraits(root));
    }

    /// Sweep the bump allocation table after we've discovered our precise stack
    /// roots.
    fn sweep(&mut self) {
        // Sweep our bump chunk.
        let num_filled = self.num_filled_in_bump_chunk();
        unsafe {
            *self.alloc.next.get() = self.alloc.end;
        }
        for slot in self.alloc.chunk.iter().take(num_filled) {
            unsafe {
                *slot.get() = None;
            }
        }
        debug_assert!(
            self.alloc
                .chunk
                .iter()
                .all(|slot| unsafe { (*slot.get()).as_ref().is_none() }),
            "after sweeping the bump chunk, all slots should be `None`"
        );

        // If this is the first instance of gc then the initial chunk is empty,
        // so we lazily allocate space for fast bump-allocation in the future.
        if self.alloc.chunk.is_empty() {
            self.alloc.chunk = Self::new_chunk(Self::CHUNK_SIZE);
            self.alloc.end =
                NonNull::new(unsafe { self.alloc.chunk.as_mut_ptr().add(self.alloc.chunk.len()) })
                    .unwrap();
        }

        // Reset our `next` finger to the start of the bump allocation chunk.
        unsafe {
            let next = self.alloc.chunk.as_mut_ptr();
            debug_assert!(!next.is_null());
            *self.alloc.next.get() = NonNull::new_unchecked(next);
        }

        // The current `precise_stack_roots` becomes our new over-appoximated
        // set for the next GC cycle.
        mem::swap(
            &mut self.precise_stack_roots,
            &mut self.over_approximated_stack_roots,
        );

        // And finally, the new `precise_stack_roots` should be cleared and
        // remain empty until the next GC cycle.
        //
        // Note that this may run arbitrary code as we run externref
        // destructors. Because of our `&mut` borrow above on this table,
        // though, we're guaranteed that nothing will touch this table.
        self.precise_stack_roots.clear();
    }

    /// Fetches the current value of this table's stack canary.
    ///
    /// This should only be used in conjunction with setting the stack canary
    /// below if the return value is `None` typically. This is called from RAII
    /// guards in `wasmtime::func::invoke_wasm_and_catch_traps`.
    ///
    /// For more information on canaries see the gc functions below.
    #[inline]
    pub fn stack_canary(&self) -> Option<usize> {
        self.stack_canary
    }

    /// Sets the current value of the stack canary.
    ///
    /// This is called from RAII guards in
    /// `wasmtime::func::invoke_wasm_and_catch_traps`. This is used to update
    /// the stack canary to a concrete value and then reset it back to `None`
    /// when wasm is finished.
    ///
    /// For more information on canaries see the gc functions below.
    #[inline]
    pub fn set_stack_canary(&mut self, canary: Option<usize>) {
        self.stack_canary = canary;
    }

    /// Set whether it is okay to GC or not right now.
    ///
    /// This is provided as a helper for enabling various debug-only assertions
    /// and checking places where the `wasmtime-runtime` user expects there not
    /// to be any GCs.
    #[inline]
    pub fn set_gc_okay(&mut self, okay: bool) -> bool {
        #[cfg(debug_assertions)]
        {
            return std::mem::replace(&mut self.gc_okay, okay);
        }
        #[cfg(not(debug_assertions))]
        {
            let _ = okay;
            return true;
        }
    }
}

/// Used by the runtime to lookup information about a module given a
/// program counter value.
pub trait ModuleInfoLookup {
    /// Lookup the module information from a program counter value.
    fn lookup(&self, pc: usize) -> Option<&dyn ModuleInfo>;
}

/// Used by the runtime to query module information.
pub trait ModuleInfo {
    /// Lookup the stack map at a program counter value.
    fn lookup_stack_map(&self, pc: usize) -> Option<&StackMap>;
}

#[derive(Debug, Default)]
struct DebugOnly<T> {
    inner: T,
}

impl<T> std::ops::Deref for DebugOnly<T> {
    type Target = T;

    fn deref(&self) -> &T {
        if cfg!(debug_assertions) {
            &self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

impl<T> std::ops::DerefMut for DebugOnly<T> {
    fn deref_mut(&mut self) -> &mut T {
        if cfg!(debug_assertions) {
            &mut self.inner
        } else {
            panic!(
                "only deref `DebugOnly` when `cfg(debug_assertions)` or \
                 inside a `debug_assert!(..)`"
            )
        }
    }
}

/// Perform garbage collection of `VMExternRef`s.
///
/// # Unsafety
///
/// You must have called `VMExternRefActivationsTable::set_stack_canary` for at
/// least the oldest host-->Wasm stack frame transition on this thread's stack
/// (it is idempotent to call it more than once) and keep its return value alive
/// across the duration of that host-->Wasm call.
///
/// Additionally, you must have registered the stack maps for every Wasm module
/// that has frames on the stack with the given `stack_maps_registry`.
pub unsafe fn gc(
    module_info_lookup: &dyn ModuleInfoLookup,
    externref_activations_table: &mut VMExternRefActivationsTable,
) {
    log::debug!("start GC");

    #[cfg(debug_assertions)]
    assert!(externref_activations_table.gc_okay);

    debug_assert!({
        // This set is only non-empty within this function. It is built up when
        // walking the stack and interpreting stack maps, and then drained back
        // into the activations table's bump-allocated space at the
        // end. Therefore, it should always be empty upon entering this
        // function.
        externref_activations_table.precise_stack_roots.is_empty()
    });

    // Whenever we call into Wasm from host code for the first time, we set a
    // stack canary. When we return to that host code, we unset the stack
    // canary. If there is *not* a stack canary, then there must be zero Wasm
    // frames on the stack. Therefore, we can simply reset the table without
    // walking the stack.
    let stack_canary = match externref_activations_table.stack_canary {
        None => {
            if cfg!(debug_assertions) {
                // Assert that there aren't any Wasm frames on the stack.
                backtrace::trace(|frame| {
                    assert!(module_info_lookup.lookup(frame.ip() as usize).is_none());
                    true
                });
            }
            externref_activations_table.sweep();
            log::debug!("end GC");
            return;
        }
        Some(canary) => canary,
    };

    // There is a stack canary, so there must be Wasm frames on the stack. The
    // rest of this function consists of:
    //
    // * walking the stack,
    //
    // * finding the precise set of roots inside Wasm frames via our stack maps,
    //   and
    //
    // * resetting our bump-allocated table's over-approximation to the
    //   newly-discovered precise set.

    // The SP of the previous (younger) frame we processed.
    let mut last_sp: Option<usize> = None;

    // Whether we have found our stack canary or not yet.
    let mut found_canary = false;

    // The `activations_table_set` is used for `debug_assert!`s checking that
    // every reference we read out from the stack via stack maps is actually in
    // the table. If that weren't true, than either we forgot to insert a
    // reference in the table when passing it into Wasm (a bug) or we are
    // reading invalid references from the stack (another bug).
    let mut activations_table_set: DebugOnly<HashSet<_>> = Default::default();
    if cfg!(debug_assertions) {
        externref_activations_table.elements(|elem| {
            activations_table_set.insert(elem.as_raw() as *mut VMExternData);
        });
    }

    backtrace::trace(|frame| {
        let pc = frame.ip() as usize;
        let sp = frame.sp() as usize;

        if let Some(module_info) = module_info_lookup.lookup(pc) {
            if let Some(stack_map) = module_info.lookup_stack_map(pc) {
                debug_assert!(sp != 0, "we should always get a valid SP for Wasm frames");

                for i in 0..(stack_map.mapped_words() as usize) {
                    if stack_map.get_bit(i) {
                        // Stack maps have one bit per word in the frame, and the
                        // zero^th bit is the *lowest* addressed word in the frame,
                        // i.e. the closest to the SP. So to get the `i`^th word in
                        // this frame, we add `i * sizeof(word)` to the SP.
                        let ptr_to_ref = sp + i * mem::size_of::<usize>();

                        let r = std::ptr::read(ptr_to_ref as *const *mut VMExternData);
                        debug_assert!(
                            r.is_null() || activations_table_set.contains(&r),
                            "every on-stack externref inside a Wasm frame should \
                            have an entry in the VMExternRefActivationsTable; \
                            {:?} is not in the table",
                            r
                        );
                        if let Some(r) = NonNull::new(r) {
                            VMExternRefActivationsTable::insert_precise_stack_root(
                                &mut externref_activations_table.precise_stack_roots,
                                r,
                            );
                        }
                    }
                }
            }
        }

        if let Some(last_sp) = last_sp {
            // We've found the stack canary when we walk over the frame that it
            // is contained within.
            found_canary |= last_sp <= stack_canary && stack_canary <= sp;
        }
        last_sp = Some(sp);

        // Keep walking the stack until we've found the canary, which is the
        // oldest frame before we ever called into Wasm. We can stop once we've
        // found it because there won't be any more Wasm frames, and therefore
        // there won't be anymore on-stack, inside-a-Wasm-frame roots.
        !found_canary
    });

    // Only sweep and reset the table if we found the stack canary, and
    // therefore know that we discovered all the on-stack, inside-a-Wasm-frame
    // roots. If we did *not* find the stack canary, then `libunwind` failed to
    // walk the whole stack, and we might be missing roots. Reseting the table
    // would free those missing roots while they are still in use, leading to
    // use-after-free.
    if found_canary {
        externref_activations_table.sweep();
    } else {
        log::warn!("did not find stack canary; skipping GC sweep");
        externref_activations_table.precise_stack_roots.clear();
    }

    log::debug!("end GC");
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::convert::TryInto;

    #[test]
    fn extern_ref_is_pointer_sized_and_aligned() {
        assert_eq!(mem::size_of::<VMExternRef>(), mem::size_of::<*mut ()>());
        assert_eq!(mem::align_of::<VMExternRef>(), mem::align_of::<*mut ()>());
        assert_eq!(
            mem::size_of::<Option<VMExternRef>>(),
            mem::size_of::<*mut ()>()
        );
        assert_eq!(
            mem::align_of::<Option<VMExternRef>>(),
            mem::align_of::<*mut ()>()
        );
    }

    #[test]
    fn ref_count_is_at_correct_offset() {
        let s = "hi";
        let s: &(dyn Any + Send + Sync) = &s as _;
        let s: *const (dyn Any + Send + Sync) = s as _;
        let s: *mut (dyn Any + Send + Sync) = s as _;

        let extern_data = VMExternData {
            ref_count: AtomicUsize::new(0),
            value_ptr: NonNull::new(s).unwrap(),
        };

        let extern_data_ptr = &extern_data as *const _;
        let ref_count_ptr = &extern_data.ref_count as *const _;

        let actual_offset = (ref_count_ptr as usize) - (extern_data_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: 8,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_defined_globals: 0,
            num_escaped_funcs: 0,
        });
        assert_eq!(
            offsets.vm_extern_data_ref_count(),
            actual_offset.try_into().unwrap(),
        );
    }

    #[test]
    fn table_next_is_at_correct_offset() {
        let table = VMExternRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let next_ptr = &table.alloc.next as *const _;

        let actual_offset = (next_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: 8,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_defined_globals: 0,
            num_escaped_funcs: 0,
        });
        assert_eq!(
            offsets.vm_extern_ref_activation_table_next() as usize,
            actual_offset
        );
    }

    #[test]
    fn table_end_is_at_correct_offset() {
        let table = VMExternRefActivationsTable::new();

        let table_ptr = &table as *const _;
        let end_ptr = &table.alloc.end as *const _;

        let actual_offset = (end_ptr as usize) - (table_ptr as usize);

        let offsets = wasmtime_environ::VMOffsets::from(wasmtime_environ::VMOffsetsFields {
            ptr: 8,
            num_imported_functions: 0,
            num_imported_tables: 0,
            num_imported_memories: 0,
            num_imported_globals: 0,
            num_defined_tables: 0,
            num_defined_memories: 0,
            num_defined_globals: 0,
            num_escaped_funcs: 0,
        });
        assert_eq!(
            offsets.vm_extern_ref_activation_table_end() as usize,
            actual_offset
        );
    }
}