1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.
use crate::VMContext;
use anyhow::Error;
use std::any::Any;
use std::cell::{Cell, UnsafeCell};
use std::mem::MaybeUninit;
use std::ptr;
use std::sync::Once;
use wasmtime_environ::TrapCode;
pub use self::tls::{tls_eager_initialize, TlsRestore};
pub use backtrace::Backtrace;
#[link(name = "wasmtime-helpers")]
extern "C" {
#[allow(improper_ctypes)]
fn wasmtime_setjmp(
jmp_buf: *mut *const u8,
callback: extern "C" fn(*mut u8, *mut VMContext),
payload: *mut u8,
callee: *mut VMContext,
) -> i32;
fn wasmtime_longjmp(jmp_buf: *const u8) -> !;
}
cfg_if::cfg_if! {
if #[cfg(all(target_os = "macos", not(feature = "posix-signals-on-macos")))] {
mod macos;
use macos as sys;
} else if #[cfg(unix)] {
mod unix;
use unix as sys;
} else if #[cfg(target_os = "windows")] {
mod windows;
use windows as sys;
}
}
pub use sys::SignalHandler;
/// Globally-set callback to determine whether a program counter is actually a
/// wasm trap.
///
/// This is initialized during `init_traps` below. The definition lives within
/// `wasmtime` currently.
static mut IS_WASM_PC: fn(usize) -> bool = |_| false;
/// This function is required to be called before any WebAssembly is entered.
/// This will configure global state such as signal handlers to prepare the
/// process to receive wasm traps.
///
/// This function must not only be called globally once before entering
/// WebAssembly but it must also be called once-per-thread that enters
/// WebAssembly. Currently in wasmtime's integration this function is called on
/// creation of a `Engine`.
///
/// The `is_wasm_pc` argument is used when a trap happens to determine if a
/// program counter is the pc of an actual wasm trap or not. This is then used
/// to disambiguate faults that happen due to wasm and faults that happen due to
/// bugs in Rust or elsewhere.
pub fn init_traps(is_wasm_pc: fn(usize) -> bool) {
static INIT: Once = Once::new();
INIT.call_once(|| unsafe {
IS_WASM_PC = is_wasm_pc;
sys::platform_init();
});
}
/// Raises a user-defined trap immediately.
///
/// This function performs as-if a wasm trap was just executed, only the trap
/// has a dynamic payload associated with it which is user-provided. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_user_trap(data: Error) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::UserTrap(data)))
}
/// Raises a trap from inside library code immediately.
///
/// This function performs as-if a wasm trap was just executed. This trap
/// payload is then returned from `catch_traps` below.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn raise_lib_trap(trap: Trap) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::LibTrap(trap)))
}
/// Carries a Rust panic across wasm code and resumes the panic on the other
/// side.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
pub unsafe fn resume_panic(payload: Box<dyn Any + Send>) -> ! {
tls::with(|info| info.unwrap().unwind_with(UnwindReason::Panic(payload)))
}
/// Stores trace message with backtrace.
#[derive(Debug)]
pub enum Trap {
/// A user-raised trap through `raise_user_trap`.
User {
/// The user-provided error
error: Error,
/// Native stack backtrace at the time the trap occurred
backtrace: Option<Backtrace>,
},
/// A trap raised from jit code
Jit {
/// The program counter in JIT code where this trap happened.
pc: usize,
/// Native stack backtrace at the time the trap occurred
backtrace: Option<Backtrace>,
},
/// A trap raised from a wasm libcall
Wasm {
/// Code of the trap.
trap_code: TrapCode,
/// Native stack backtrace at the time the trap occurred
backtrace: Option<Backtrace>,
},
/// A trap indicating that the runtime was unable to allocate sufficient memory.
OOM {
/// Native stack backtrace at the time the OOM occurred
backtrace: Option<Backtrace>,
},
}
impl Trap {
/// Construct a new Wasm trap with the given trap code.
///
/// Internally saves a backtrace when passed across a setjmp boundary, if the
/// engine is configured to save backtraces.
pub fn wasm(trap_code: TrapCode) -> Self {
Trap::Wasm {
trap_code,
backtrace: None,
}
}
/// Construct a new Wasm trap from a user Error.
///
/// Internally saves a backtrace when passed across a setjmp boundary, if the
/// engine is configured to save backtraces.
pub fn user(error: Error) -> Self {
Trap::User {
error,
backtrace: None,
}
}
/// Construct a new OOM trap.
///
/// Internally saves a backtrace when passed across a setjmp boundary, if the
/// engine is configured to save backtraces.
pub fn oom() -> Self {
Trap::OOM { backtrace: None }
}
fn insert_backtrace(&mut self, bt: Backtrace) {
match self {
Trap::User { backtrace, .. } => *backtrace = Some(bt),
Trap::Jit { backtrace, .. } => *backtrace = Some(bt),
Trap::Wasm { backtrace, .. } => *backtrace = Some(bt),
Trap::OOM { backtrace, .. } => *backtrace = Some(bt),
}
}
}
/// Catches any wasm traps that happen within the execution of `closure`,
/// returning them as a `Result`.
///
/// Highly unsafe since `closure` won't have any dtors run.
pub unsafe fn catch_traps<'a, F>(
signal_handler: Option<*const SignalHandler<'static>>,
capture_backtrace: bool,
callee: *mut VMContext,
mut closure: F,
) -> Result<(), Box<Trap>>
where
F: FnMut(*mut VMContext),
{
return CallThreadState::new(signal_handler, capture_backtrace).with(|cx| {
wasmtime_setjmp(
cx.jmp_buf.as_ptr(),
call_closure::<F>,
&mut closure as *mut F as *mut u8,
callee,
)
});
extern "C" fn call_closure<F>(payload: *mut u8, callee: *mut VMContext)
where
F: FnMut(*mut VMContext),
{
unsafe { (*(payload as *mut F))(callee) }
}
}
/// Temporary state stored on the stack which is registered in the `tls` module
/// below for calls into wasm.
pub struct CallThreadState {
unwind: UnsafeCell<MaybeUninit<(UnwindReason, Option<Backtrace>)>>,
jmp_buf: Cell<*const u8>,
handling_trap: Cell<bool>,
signal_handler: Option<*const SignalHandler<'static>>,
prev: Cell<tls::Ptr>,
capture_backtrace: bool,
}
enum UnwindReason {
Panic(Box<dyn Any + Send>),
UserTrap(Error),
LibTrap(Trap),
JitTrap { pc: usize }, // Removed a backtrace here
}
impl CallThreadState {
#[inline]
fn new(
signal_handler: Option<*const SignalHandler<'static>>,
capture_backtrace: bool,
) -> CallThreadState {
CallThreadState {
unwind: UnsafeCell::new(MaybeUninit::uninit()),
jmp_buf: Cell::new(ptr::null()),
handling_trap: Cell::new(false),
signal_handler,
prev: Cell::new(ptr::null()),
capture_backtrace,
}
}
fn with(self, closure: impl FnOnce(&CallThreadState) -> i32) -> Result<(), Box<Trap>> {
let ret = tls::set(&self, || closure(&self))?;
if ret != 0 {
Ok(())
} else {
Err(unsafe { self.read_trap() })
}
}
#[cold]
unsafe fn read_trap(&self) -> Box<Trap> {
Box::new(match (*self.unwind.get()).as_ptr().read() {
(UnwindReason::UserTrap(error), backtrace) => Trap::User { error, backtrace },
(UnwindReason::LibTrap(mut trap), backtrace) => {
if let Some(backtrace) = backtrace {
trap.insert_backtrace(backtrace);
}
trap
}
(UnwindReason::JitTrap { pc }, backtrace) => Trap::Jit { pc, backtrace },
(UnwindReason::Panic(panic), _) => std::panic::resume_unwind(panic),
})
}
fn unwind_with(&self, reason: UnwindReason) -> ! {
let backtrace = if self.capture_backtrace {
Some(Backtrace::new_unresolved())
} else {
None
};
unsafe {
(*self.unwind.get()).as_mut_ptr().write((reason, backtrace));
wasmtime_longjmp(self.jmp_buf.get());
}
}
/// Trap handler using our thread-local state.
///
/// * `pc` - the program counter the trap happened at
/// * `call_handler` - a closure used to invoke the platform-specific
/// signal handler for each instance, if available.
///
/// Attempts to handle the trap if it's a wasm trap. Returns a few
/// different things:
///
/// * null - the trap didn't look like a wasm trap and should continue as a
/// trap
/// * 1 as a pointer - the trap was handled by a custom trap handler on an
/// instance, and the trap handler should quickly return.
/// * a different pointer - a jmp_buf buffer to longjmp to, meaning that
/// the wasm trap was succesfully handled.
#[cfg_attr(target_os = "macos", allow(dead_code))] // macOS is more raw and doesn't use this
fn jmp_buf_if_trap(
&self,
pc: *const u8,
call_handler: impl Fn(&SignalHandler) -> bool,
) -> *const u8 {
// If we hit a fault while handling a previous trap, that's quite bad,
// so bail out and let the system handle this recursive segfault.
//
// Otherwise flag ourselves as handling a trap, do the trap handling,
// and reset our trap handling flag.
if self.handling_trap.replace(true) {
return ptr::null();
}
let _reset = ResetCell(&self.handling_trap, false);
// If we haven't even started to handle traps yet, bail out.
if self.jmp_buf.get().is_null() {
return ptr::null();
}
// First up see if any instance registered has a custom trap handler,
// in which case run them all. If anything handles the trap then we
// return that the trap was handled.
if let Some(handler) = self.signal_handler {
if unsafe { call_handler(&*handler) } {
return 1 as *const _;
}
}
// If this fault wasn't in wasm code, then it's not our problem
if unsafe { !IS_WASM_PC(pc as usize) } {
return ptr::null();
}
// If all that passed then this is indeed a wasm trap, so return the
// `jmp_buf` passed to `wasmtime_longjmp` to resume.
self.jmp_buf.get()
}
fn capture_backtrace(&self, pc: *const u8) {
let backtrace = if self.capture_backtrace {
Some(Backtrace::new_unresolved())
} else {
None
};
unsafe {
(*self.unwind.get())
.as_mut_ptr()
.write((UnwindReason::JitTrap { pc: pc as usize }, backtrace));
}
}
}
struct ResetCell<'a, T: Copy>(&'a Cell<T>, T);
impl<T: Copy> Drop for ResetCell<'_, T> {
#[inline]
fn drop(&mut self) {
self.0.set(self.1);
}
}
// A private inner module for managing the TLS state that we require across
// calls in wasm. The WebAssembly code is called from C++ and then a trap may
// happen which requires us to read some contextual state to figure out what to
// do with the trap. This `tls` module is used to persist that information from
// the caller to the trap site.
mod tls {
use super::CallThreadState;
use crate::Trap;
use std::ptr;
pub use raw::Ptr;
// An even *more* inner module for dealing with TLS. This actually has the
// thread local variable and has functions to access the variable.
//
// Note that this is specially done to fully encapsulate that the accessors
// for tls may or may not be inlined. Wasmtime's async support employs stack
// switching which can resume execution on different OS threads. This means
// that borrows of our TLS pointer must never live across accesses because
// otherwise the access may be split across two threads and cause unsafety.
//
// This also means that extra care is taken by the runtime to save/restore
// these TLS values when the runtime may have crossed threads.
//
// Note, though, that if async support is disabled at compile time then
// these functions are free to be inlined.
mod raw {
use super::CallThreadState;
use crate::Trap;
use std::cell::Cell;
use std::ptr;
pub type Ptr = *const CallThreadState;
// The first entry here is the `Ptr` which is what's used as part of the
// public interface of this module. The second entry is a boolean which
// allows the runtime to perform per-thread initialization if necessary
// for handling traps (e.g. setting up ports on macOS and sigaltstack on
// Unix).
thread_local!(static PTR: Cell<(Ptr, bool)> = const { Cell::new((ptr::null(), false)) });
#[cfg_attr(feature = "async", inline(never))] // see module docs
#[cfg_attr(not(feature = "async"), inline)]
pub fn replace(val: Ptr) -> Result<Ptr, Box<Trap>> {
PTR.with(|p| {
// When a new value is configured that means that we may be
// entering WebAssembly so check to see if this thread has
// performed per-thread initialization for traps.
let (prev, initialized) = p.get();
if !initialized {
super::super::sys::lazy_per_thread_init()?;
}
p.set((val, true));
Ok(prev)
})
}
/// Eagerly initialize thread-local runtime functionality. This will be performed
/// lazily by the runtime if users do not perform it eagerly.
#[cfg_attr(feature = "async", inline(never))] // see module docs
#[cfg_attr(not(feature = "async"), inline)]
pub fn initialize() -> Result<(), Box<Trap>> {
PTR.with(|p| {
let (state, initialized) = p.get();
if initialized {
return Ok(());
}
super::super::sys::lazy_per_thread_init()?;
p.set((state, true));
Ok(())
})
}
#[cfg_attr(feature = "async", inline(never))] // see module docs
#[cfg_attr(not(feature = "async"), inline)]
pub fn get() -> Ptr {
PTR.with(|p| p.get().0)
}
}
pub use raw::initialize as tls_eager_initialize;
/// Opaque state used to help control TLS state across stack switches for
/// async support.
pub struct TlsRestore(raw::Ptr);
impl TlsRestore {
/// Takes the TLS state that is currently configured and returns a
/// token that is used to replace it later.
///
/// This is not a safe operation since it's intended to only be used
/// with stack switching found with fibers and async wasmtime.
pub unsafe fn take() -> Result<TlsRestore, Box<Trap>> {
// Our tls pointer must be set at this time, and it must not be
// null. We need to restore the previous pointer since we're
// removing ourselves from the call-stack, and in the process we
// null out our own previous field for safety in case it's
// accidentally used later.
let raw = raw::get();
if !raw.is_null() {
let prev = (*raw).prev.replace(ptr::null());
raw::replace(prev)?;
}
// Null case: we aren't in a wasm context, so theres no tls
// to save for restoration.
Ok(TlsRestore(raw))
}
/// Restores a previous tls state back into this thread's TLS.
///
/// This is unsafe because it's intended to only be used within the
/// context of stack switching within wasmtime.
pub unsafe fn replace(self) -> Result<(), Box<super::Trap>> {
// Null case: we aren't in a wasm context, so theres no tls
// to restore.
if self.0.is_null() {
return Ok(());
}
// We need to configure our previous TLS pointer to whatever is in
// TLS at this time, and then we set the current state to ourselves.
let prev = raw::get();
assert!((*self.0).prev.get().is_null());
(*self.0).prev.set(prev);
raw::replace(self.0)?;
Ok(())
}
}
/// Configures thread local state such that for the duration of the
/// execution of `closure` any call to `with` will yield `ptr`, unless this
/// is recursively called again.
#[inline]
pub fn set<R>(state: &CallThreadState, closure: impl FnOnce() -> R) -> Result<R, Box<Trap>> {
struct Reset<'a>(&'a CallThreadState);
impl Drop for Reset<'_> {
#[inline]
fn drop(&mut self) {
raw::replace(self.0.prev.replace(ptr::null()))
.expect("tls should be previously initialized");
}
}
let prev = raw::replace(state)?;
state.prev.set(prev);
let _reset = Reset(state);
Ok(closure())
}
/// Returns the last pointer configured with `set` above. Panics if `set`
/// has not been previously called.
pub fn with<R>(closure: impl FnOnce(Option<&CallThreadState>) -> R) -> R {
let p = raw::get();
unsafe { closure(if p.is_null() { None } else { Some(&*p) }) }
}
}