1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
//! Parallel merge sort.
//!
//! This implementation is copied verbatim from `std::slice::sort` and then parallelized.
//! The only difference from the original is that the sequential `mergesort` returns
//! `MergesortResult` and leaves descending arrays intact.
use crate::iter::*;
use crate::slice::ParallelSliceMut;
use crate::SendPtr;
use std::mem;
use std::mem::size_of;
use std::ptr;
use std::slice;
unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
let old = *ptr;
*ptr = ptr.offset(1);
old
}
unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
*ptr = ptr.offset(-1);
*ptr
}
/// When dropped, copies from `src` into `dest` a sequence of length `len`.
struct CopyOnDrop<T> {
src: *const T,
dest: *mut T,
len: usize,
}
impl<T> Drop for CopyOnDrop<T> {
fn drop(&mut self) {
unsafe {
ptr::copy_nonoverlapping(self.src, self.dest, self.len);
}
}
}
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
///
/// This is the integral subroutine of insertion sort.
fn insert_head<T, F>(v: &mut [T], is_less: &F)
where
F: Fn(&T, &T) -> bool,
{
if v.len() >= 2 && is_less(&v[1], &v[0]) {
unsafe {
// There are three ways to implement insertion here:
//
// 1. Swap adjacent elements until the first one gets to its final destination.
// However, this way we copy data around more than is necessary. If elements are big
// structures (costly to copy), this method will be slow.
//
// 2. Iterate until the right place for the first element is found. Then shift the
// elements succeeding it to make room for it and finally place it into the
// remaining hole. This is a good method.
//
// 3. Copy the first element into a temporary variable. Iterate until the right place
// for it is found. As we go along, copy every traversed element into the slot
// preceding it. Finally, copy data from the temporary variable into the remaining
// hole. This method is very good. Benchmarks demonstrated slightly better
// performance than with the 2nd method.
//
// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
// Intermediate state of the insertion process is always tracked by `hole`, which
// serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` in the end.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and
// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
// initially held exactly once.
let mut hole = InsertionHole {
src: &*tmp,
dest: &mut v[1],
};
ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
for i in 2..v.len() {
if !is_less(&v[i], &*tmp) {
break;
}
ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
hole.dest = &mut v[i];
}
// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
}
}
// When dropped, copies from `src` into `dest`.
struct InsertionHole<T> {
src: *const T,
dest: *mut T,
}
impl<T> Drop for InsertionHole<T> {
fn drop(&mut self) {
unsafe {
ptr::copy_nonoverlapping(self.src, self.dest, 1);
}
}
}
}
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///
/// # Safety
///
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &F)
where
F: Fn(&T, &T) -> bool,
{
let len = v.len();
let v = v.as_mut_ptr();
let v_mid = v.add(mid);
let v_end = v.add(len);
// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
// copying the lesser (or greater) one into `v`.
//
// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
// consumed first, then we must copy whatever is left of the shorter run into the remaining
// hole in `v`.
//
// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
// 1. Protects integrity of `v` from panics in `is_less`.
// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
//
// Panic safety:
//
// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
// object it initially held exactly once.
let mut hole;
if mid <= len - mid {
// The left run is shorter.
ptr::copy_nonoverlapping(v, buf, mid);
hole = MergeHole {
start: buf,
end: buf.add(mid),
dest: v,
};
// Initially, these pointers point to the beginnings of their arrays.
let left = &mut hole.start;
let mut right = v_mid;
let out = &mut hole.dest;
while *left < hole.end && right < v_end {
// Consume the lesser side.
// If equal, prefer the left run to maintain stability.
let to_copy = if is_less(&*right, &**left) {
get_and_increment(&mut right)
} else {
get_and_increment(left)
};
ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
}
} else {
// The right run is shorter.
ptr::copy_nonoverlapping(v_mid, buf, len - mid);
hole = MergeHole {
start: buf,
end: buf.add(len - mid),
dest: v_mid,
};
// Initially, these pointers point past the ends of their arrays.
let left = &mut hole.dest;
let right = &mut hole.end;
let mut out = v_end;
while v < *left && buf < *right {
// Consume the greater side.
// If equal, prefer the right run to maintain stability.
let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
decrement_and_get(left)
} else {
decrement_and_get(right)
};
ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
}
}
// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
// it will now be copied into the hole in `v`.
// When dropped, copies the range `start..end` into `dest..`.
struct MergeHole<T> {
start: *mut T,
end: *mut T,
dest: *mut T,
}
impl<T> Drop for MergeHole<T> {
fn drop(&mut self) {
// `T` is not a zero-sized type, so it's okay to divide by its size.
let len = (self.end as usize - self.start as usize) / size_of::<T>();
unsafe {
// TODO 1.47: let len = self.end.offset_from(self.start) as usize;
ptr::copy_nonoverlapping(self.start, self.dest, len);
}
}
}
}
/// The result of merge sort.
#[must_use]
#[derive(Clone, Copy, PartialEq, Eq)]
enum MergesortResult {
/// The slice has already been sorted.
NonDescending,
/// The slice has been descending and therefore it was left intact.
Descending,
/// The slice was sorted.
Sorted,
}
/// A sorted run that starts at index `start` and is of length `len`.
#[derive(Clone, Copy)]
struct Run {
start: usize,
len: usize,
}
/// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
/// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
/// algorithm should continue building a new run instead, `None` is returned.
///
/// TimSort is infamous for its buggy implementations, as described here:
/// http://envisage-project.eu/timsort-specification-and-verification/
///
/// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
/// Enforcing them on just top three is not sufficient to ensure that the invariants will still
/// hold for *all* runs in the stack.
///
/// This function correctly checks invariants for the top four runs. Additionally, if the top
/// run starts at index 0, it will always demand a merge operation until the stack is fully
/// collapsed, in order to complete the sort.
#[inline]
fn collapse(runs: &[Run]) -> Option<usize> {
let n = runs.len();
if n >= 2
&& (runs[n - 1].start == 0
|| runs[n - 2].len <= runs[n - 1].len
|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
{
if n >= 3 && runs[n - 3].len < runs[n - 1].len {
Some(n - 3)
} else {
Some(n - 2)
}
} else {
None
}
}
/// Sorts a slice using merge sort, unless it is already in descending order.
///
/// This function doesn't modify the slice if it is already non-descending or descending.
/// Otherwise, it sorts the slice into non-descending order.
///
/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
///
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
/// satisfied:
///
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
///
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
///
/// # Safety
///
/// The argument `buf` is used as a temporary buffer and must be at least as long as `v`.
unsafe fn mergesort<T, F>(v: &mut [T], buf: *mut T, is_less: &F) -> MergesortResult
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Very short runs are extended using insertion sort to span at least this many elements.
const MIN_RUN: usize = 10;
let len = v.len();
// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
// strange decision, but consider the fact that merges more often go in the opposite direction
// (forwards). According to benchmarks, merging forwards is slightly faster than merging
// backwards. To conclude, identifying runs by traversing backwards improves performance.
let mut runs = vec![];
let mut end = len;
while end > 0 {
// Find the next natural run, and reverse it if it's strictly descending.
let mut start = end - 1;
if start > 0 {
start -= 1;
if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
start -= 1;
}
// If this descending run covers the whole slice, return immediately.
if start == 0 && end == len {
return MergesortResult::Descending;
} else {
v[start..end].reverse();
}
} else {
while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
start -= 1;
}
// If this non-descending run covers the whole slice, return immediately.
if end - start == len {
return MergesortResult::NonDescending;
}
}
}
// Insert some more elements into the run if it's too short. Insertion sort is faster than
// merge sort on short sequences, so this significantly improves performance.
while start > 0 && end - start < MIN_RUN {
start -= 1;
insert_head(&mut v[start..end], &is_less);
}
// Push this run onto the stack.
runs.push(Run {
start,
len: end - start,
});
end = start;
// Merge some pairs of adjacent runs to satisfy the invariants.
while let Some(r) = collapse(&runs) {
let left = runs[r + 1];
let right = runs[r];
merge(
&mut v[left.start..right.start + right.len],
left.len,
buf,
&is_less,
);
runs[r] = Run {
start: left.start,
len: left.len + right.len,
};
runs.remove(r + 1);
}
}
// Finally, exactly one run must remain in the stack.
debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
// The original order of the slice was neither non-descending nor descending.
MergesortResult::Sorted
}
////////////////////////////////////////////////////////////////////////////
// Everything above this line is copied from `std::slice::sort` (with very minor tweaks).
// Everything below this line is parallelization.
////////////////////////////////////////////////////////////////////////////
/// Splits two sorted slices so that they can be merged in parallel.
///
/// Returns two indices `(a, b)` so that slices `left[..a]` and `right[..b]` come before
/// `left[a..]` and `right[b..]`.
fn split_for_merge<T, F>(left: &[T], right: &[T], is_less: &F) -> (usize, usize)
where
F: Fn(&T, &T) -> bool,
{
let left_len = left.len();
let right_len = right.len();
if left_len >= right_len {
let left_mid = left_len / 2;
// Find the first element in `right` that is greater than or equal to `left[left_mid]`.
let mut a = 0;
let mut b = right_len;
while a < b {
let m = a + (b - a) / 2;
if is_less(&right[m], &left[left_mid]) {
a = m + 1;
} else {
b = m;
}
}
(left_mid, a)
} else {
let right_mid = right_len / 2;
// Find the first element in `left` that is greater than `right[right_mid]`.
let mut a = 0;
let mut b = left_len;
while a < b {
let m = a + (b - a) / 2;
if is_less(&right[right_mid], &left[m]) {
b = m;
} else {
a = m + 1;
}
}
(a, right_mid)
}
}
/// Merges slices `left` and `right` in parallel and stores the result into `dest`.
///
/// # Safety
///
/// The `dest` pointer must have enough space to store the result.
///
/// Even if `is_less` panics at any point during the merge process, this function will fully copy
/// all elements from `left` and `right` into `dest` (not necessarily in sorted order).
unsafe fn par_merge<T, F>(left: &mut [T], right: &mut [T], dest: *mut T, is_less: &F)
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Slices whose lengths sum up to this value are merged sequentially. This number is slightly
// larger than `CHUNK_LENGTH`, and the reason is that merging is faster than merge sorting, so
// merging needs a bit coarser granularity in order to hide the overhead of Rayon's task
// scheduling.
const MAX_SEQUENTIAL: usize = 5000;
let left_len = left.len();
let right_len = right.len();
// Intermediate state of the merge process, which serves two purposes:
// 1. Protects integrity of `dest` from panics in `is_less`.
// 2. Copies the remaining elements as soon as one of the two sides is exhausted.
//
// Panic safety:
//
// If `is_less` panics at any point during the merge process, `s` will get dropped and copy the
// remaining parts of `left` and `right` into `dest`.
let mut s = State {
left_start: left.as_mut_ptr(),
left_end: left.as_mut_ptr().add(left_len),
right_start: right.as_mut_ptr(),
right_end: right.as_mut_ptr().add(right_len),
dest,
};
if left_len == 0 || right_len == 0 || left_len + right_len < MAX_SEQUENTIAL {
while s.left_start < s.left_end && s.right_start < s.right_end {
// Consume the lesser side.
// If equal, prefer the left run to maintain stability.
let to_copy = if is_less(&*s.right_start, &*s.left_start) {
get_and_increment(&mut s.right_start)
} else {
get_and_increment(&mut s.left_start)
};
ptr::copy_nonoverlapping(to_copy, get_and_increment(&mut s.dest), 1);
}
} else {
// Function `split_for_merge` might panic. If that happens, `s` will get destructed and copy
// the whole `left` and `right` into `dest`.
let (left_mid, right_mid) = split_for_merge(left, right, is_less);
let (left_l, left_r) = left.split_at_mut(left_mid);
let (right_l, right_r) = right.split_at_mut(right_mid);
// Prevent the destructor of `s` from running. Rayon will ensure that both calls to
// `par_merge` happen. If one of the two calls panics, they will ensure that elements still
// get copied into `dest_left` and `dest_right``.
mem::forget(s);
// Wrap pointers in SendPtr so that they can be sent to another thread
// See the documentation of SendPtr for a full explanation
let dest_l = SendPtr(dest);
let dest_r = SendPtr(dest.add(left_l.len() + right_l.len()));
rayon_core::join(
|| par_merge(left_l, right_l, dest_l.0, is_less),
|| par_merge(left_r, right_r, dest_r.0, is_less),
);
}
// Finally, `s` gets dropped if we used sequential merge, thus copying the remaining elements
// all at once.
// When dropped, copies arrays `left_start..left_end` and `right_start..right_end` into `dest`,
// in that order.
struct State<T> {
left_start: *mut T,
left_end: *mut T,
right_start: *mut T,
right_end: *mut T,
dest: *mut T,
}
impl<T> Drop for State<T> {
fn drop(&mut self) {
let size = size_of::<T>();
let left_len = (self.left_end as usize - self.left_start as usize) / size;
let right_len = (self.right_end as usize - self.right_start as usize) / size;
// Copy array `left`, followed by `right`.
unsafe {
ptr::copy_nonoverlapping(self.left_start, self.dest, left_len);
self.dest = self.dest.add(left_len);
ptr::copy_nonoverlapping(self.right_start, self.dest, right_len);
}
}
}
}
/// Recursively merges pre-sorted chunks inside `v`.
///
/// Chunks of `v` are stored in `chunks` as intervals (inclusive left and exclusive right bound).
/// Argument `buf` is an auxiliary buffer that will be used during the procedure.
/// If `into_buf` is true, the result will be stored into `buf`, otherwise it will be in `v`.
///
/// # Safety
///
/// The number of chunks must be positive and they must be adjacent: the right bound of each chunk
/// must equal the left bound of the following chunk.
///
/// The buffer must be at least as long as `v`.
unsafe fn recurse<T, F>(
v: *mut T,
buf: *mut T,
chunks: &[(usize, usize)],
into_buf: bool,
is_less: &F,
) where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
let len = chunks.len();
debug_assert!(len > 0);
// Base case of the algorithm.
// If only one chunk is remaining, there's no more work to split and merge.
if len == 1 {
if into_buf {
// Copy the chunk from `v` into `buf`.
let (start, end) = chunks[0];
let src = v.add(start);
let dest = buf.add(start);
ptr::copy_nonoverlapping(src, dest, end - start);
}
return;
}
// Split the chunks into two halves.
let (start, _) = chunks[0];
let (mid, _) = chunks[len / 2];
let (_, end) = chunks[len - 1];
let (left, right) = chunks.split_at(len / 2);
// After recursive calls finish we'll have to merge chunks `(start, mid)` and `(mid, end)` from
// `src` into `dest`. If the current invocation has to store the result into `buf`, we'll
// merge chunks from `v` into `buf`, and viceversa.
//
// Recursive calls flip `into_buf` at each level of recursion. More concretely, `par_merge`
// merges chunks from `buf` into `v` at the first level, from `v` into `buf` at the second
// level etc.
let (src, dest) = if into_buf { (v, buf) } else { (buf, v) };
// Panic safety:
//
// If `is_less` panics at any point during the recursive calls, the destructor of `guard` will
// be executed, thus copying everything from `src` into `dest`. This way we ensure that all
// chunks are in fact copied into `dest`, even if the merge process doesn't finish.
let guard = CopyOnDrop {
src: src.add(start),
dest: dest.add(start),
len: end - start,
};
// Wrap pointers in SendPtr so that they can be sent to another thread
// See the documentation of SendPtr for a full explanation
let v = SendPtr(v);
let buf = SendPtr(buf);
rayon_core::join(
|| recurse(v.0, buf.0, left, !into_buf, is_less),
|| recurse(v.0, buf.0, right, !into_buf, is_less),
);
// Everything went all right - recursive calls didn't panic.
// Forget the guard in order to prevent its destructor from running.
mem::forget(guard);
// Merge chunks `(start, mid)` and `(mid, end)` from `src` into `dest`.
let src_left = slice::from_raw_parts_mut(src.add(start), mid - start);
let src_right = slice::from_raw_parts_mut(src.add(mid), end - mid);
par_merge(src_left, src_right, dest.add(start), is_less);
}
/// Sorts `v` using merge sort in parallel.
///
/// The algorithm is stable, allocates memory, and `O(n log n)` worst-case.
/// The allocated temporary buffer is of the same length as is `v`.
pub(super) fn par_mergesort<T, F>(v: &mut [T], is_less: F)
where
T: Send,
F: Fn(&T, &T) -> bool + Sync,
{
// Slices of up to this length get sorted using insertion sort in order to avoid the cost of
// buffer allocation.
const MAX_INSERTION: usize = 20;
// The length of initial chunks. This number is as small as possible but so that the overhead
// of Rayon's task scheduling is still negligible.
const CHUNK_LENGTH: usize = 2000;
// Sorting has no meaningful behavior on zero-sized types.
if size_of::<T>() == 0 {
return;
}
let len = v.len();
// Short slices get sorted in-place via insertion sort to avoid allocations.
if len <= MAX_INSERTION {
if len >= 2 {
for i in (0..len - 1).rev() {
insert_head(&mut v[i..], &is_less);
}
}
return;
}
// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
// shallow copies of the contents of `v` without risking the dtors running on copies if
// `is_less` panics.
let mut buf = Vec::<T>::with_capacity(len);
let buf = buf.as_mut_ptr();
// If the slice is not longer than one chunk would be, do sequential merge sort and return.
if len <= CHUNK_LENGTH {
let res = unsafe { mergesort(v, buf, &is_less) };
if res == MergesortResult::Descending {
v.reverse();
}
return;
}
// Split the slice into chunks and merge sort them in parallel.
// However, descending chunks will not be sorted - they will be simply left intact.
let mut iter = {
// Wrap pointer in SendPtr so that it can be sent to another thread
// See the documentation of SendPtr for a full explanation
let buf = SendPtr(buf);
v.par_chunks_mut(CHUNK_LENGTH)
.with_max_len(1)
.enumerate()
.map(|(i, chunk)| {
let l = CHUNK_LENGTH * i;
let r = l + chunk.len();
unsafe {
let buf = buf.0.add(l);
(l, r, mergesort(chunk, buf, &is_less))
}
})
.collect::<Vec<_>>()
.into_iter()
.peekable()
};
// Now attempt to concatenate adjacent chunks that were left intact.
let mut chunks = Vec::with_capacity(iter.len());
while let Some((a, mut b, res)) = iter.next() {
// If this chunk was not modified by the sort procedure...
if res != MergesortResult::Sorted {
while let Some(&(x, y, r)) = iter.peek() {
// If the following chunk is of the same type and can be concatenated...
if r == res && (r == MergesortResult::Descending) == is_less(&v[x], &v[x - 1]) {
// Concatenate them.
b = y;
iter.next();
} else {
break;
}
}
}
// Descending chunks must be reversed.
if res == MergesortResult::Descending {
v[a..b].reverse();
}
chunks.push((a, b));
}
// All chunks are properly sorted.
// Now we just have to merge them together.
unsafe {
recurse(v.as_mut_ptr(), buf, &chunks, false, &is_less);
}
}
#[cfg(test)]
mod tests {
use super::split_for_merge;
use rand::distributions::Uniform;
use rand::{thread_rng, Rng};
#[test]
fn test_split_for_merge() {
fn check(left: &[u32], right: &[u32]) {
let (l, r) = split_for_merge(left, right, &|&a, &b| a < b);
assert!(left[..l]
.iter()
.all(|&x| right[r..].iter().all(|&y| x <= y)));
assert!(right[..r].iter().all(|&x| left[l..].iter().all(|&y| x < y)));
}
check(&[1, 2, 2, 2, 2, 3], &[1, 2, 2, 2, 2, 3]);
check(&[1, 2, 2, 2, 2, 3], &[]);
check(&[], &[1, 2, 2, 2, 2, 3]);
let ref mut rng = thread_rng();
for _ in 0..100 {
let limit: u32 = rng.gen_range(1..21);
let left_len: usize = rng.gen_range(0..20);
let right_len: usize = rng.gen_range(0..20);
let mut left = rng
.sample_iter(&Uniform::new(0, limit))
.take(left_len)
.collect::<Vec<_>>();
let mut right = rng
.sample_iter(&Uniform::new(0, limit))
.take(right_len)
.collect::<Vec<_>>();
left.sort();
right.sort();
check(&left, &right);
}
}
}