1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
// Bitcoin secp256k1 bindings
// Written in 2021 by
// Maxim Orlovsky <orlovsky@pandoracore.com>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Helpers for displaying secret values
use core::fmt;
use crate::{to_hex, constants::SECRET_KEY_SIZE, key::{SecretKey, KeyPair}, ecdh::SharedSecret};
macro_rules! impl_display_secret {
// Default hasher exists only in standard library and not alloc
($thing:ident) => {
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl core::fmt::Debug for $thing {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use core::hash::Hasher;
const DEBUG_HASH_TAG: &[u8] = &[
0x66, 0xa6, 0x77, 0x1b, 0x9b, 0x6d, 0xae, 0xa1, 0xb2, 0xee, 0x4e, 0x07, 0x49,
0x4a, 0xac, 0x87, 0xa9, 0xb8, 0x5b, 0x4b, 0x35, 0x02, 0xaa, 0x6d, 0x0f, 0x79,
0xcb, 0x63, 0xe6, 0xf8, 0x66, 0x22
]; // =SHA256(b"rust-secp256k1DEBUG");
let mut hasher = std::collections::hash_map::DefaultHasher::new();
hasher.write(DEBUG_HASH_TAG);
hasher.write(DEBUG_HASH_TAG);
hasher.write(&self.secret_bytes());
let hash = hasher.finish();
f.debug_tuple(stringify!($thing))
.field(&format_args!("#{:016x}", hash))
.finish()
}
}
#[cfg(all(not(feature = "std"), feature = "bitcoin_hashes"))]
impl ::core::fmt::Debug for $thing {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
use crate::hashes::{sha256, Hash, HashEngine};
let tag = "rust-secp256k1DEBUG";
let mut engine = sha256::Hash::engine();
let tag_hash = sha256::Hash::hash(tag.as_bytes());
engine.input(&tag_hash[..]);
engine.input(&tag_hash[..]);
engine.input(&self.secret_bytes());
let hash = sha256::Hash::from_engine(engine);
f.debug_tuple(stringify!($thing))
.field(&format_args!("#{:016x}", hash))
.finish()
}
}
#[cfg(all(not(feature = "std"), not(feature = "bitcoin_hashes")))]
impl ::core::fmt::Debug for $thing {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "<secret requires std or bitcoin_hashes feature to display>")
}
}
}
}
/// Helper struct for safely printing secrets (like [`SecretKey`] value).
/// Formats the explicit byte value of the secret kept inside the type as a
/// little-endian hexadecimal string using the provided formatter.
///
/// Secrets should not implement neither [`Debug`] and [`Display`] traits directly,
/// and instead provide `fn display_secret<'a>(&'a self) -> DisplaySecret<'a>`
/// function to be used in different display contexts (see "examples" below).
///
/// [`Display`]: fmt::Display
/// [`Debug`]: fmt::Debug
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DisplaySecret {
secret: [u8; SECRET_KEY_SIZE]
}
impl fmt::Debug for DisplaySecret {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut slice = [0u8; SECRET_KEY_SIZE * 2];
let hex = to_hex(&self.secret, &mut slice).expect("fixed-size hex serializer failed");
f.debug_tuple("DisplaySecret")
.field(&hex)
.finish()
}
}
impl fmt::Display for DisplaySecret {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for byte in &self.secret {
write!(f, "{:02x}", byte)?;
}
Ok(())
}
}
impl SecretKey {
/// Formats the explicit byte value of the secret key kept inside the type as a
/// little-endian hexadecimal string using the provided formatter.
///
/// This is the only method that outputs the actual secret key value, and, thus,
/// should be used with extreme caution.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "std")] {
/// let key = secp256k1::ONE_KEY;
///
/// // Normal debug hides value (`Display` is not implemented for `SecretKey`).
/// // E.g., `format!("{:?}", key)` prints "SecretKey(#2518682f7819fb2d)".
///
/// // Here we explicitly display the secret value:
/// assert_eq!(
/// "0000000000000000000000000000000000000000000000000000000000000001",
/// format!("{}", key.display_secret())
/// );
/// // Also, we can explicitly display with `Debug`:
/// assert_eq!(
/// format!("{:?}", key.display_secret()),
/// format!("DisplaySecret(\"{}\")", key.display_secret())
/// );
/// # }
/// ```
#[inline]
pub fn display_secret(&self) -> DisplaySecret {
DisplaySecret { secret: self.secret_bytes() }
}
}
impl KeyPair {
/// Formats the explicit byte value of the secret key kept inside the type as a
/// little-endian hexadecimal string using the provided formatter.
///
/// This is the only method that outputs the actual secret key value, and, thus,
/// should be used with extreme precaution.
///
/// # Example
///
/// ```
/// # #[cfg(feature = "std")] {
/// use secp256k1::ONE_KEY;
/// use secp256k1::KeyPair;
/// use secp256k1::Secp256k1;
///
/// let secp = Secp256k1::new();
/// let key = ONE_KEY;
/// let key = KeyPair::from_secret_key(&secp, &key);
/// // Here we explicitly display the secret value:
/// assert_eq!(
/// "0000000000000000000000000000000000000000000000000000000000000001",
/// format!("{}", key.display_secret())
/// );
/// // Also, we can explicitly display with `Debug`:
/// assert_eq!(
/// format!("{:?}", key.display_secret()),
/// format!("DisplaySecret(\"{}\")", key.display_secret())
/// );
/// # }
/// ```
#[inline]
pub fn display_secret(&self) -> DisplaySecret {
DisplaySecret { secret: self.secret_bytes() }
}
}
impl SharedSecret {
/// Formats the explicit byte value of the shared secret kept inside the type as a
/// little-endian hexadecimal string using the provided formatter.
///
/// This is the only method that outputs the actual shared secret value, and, thus,
/// should be used with extreme caution.
///
/// # Examples
///
/// ```
/// # #[cfg(not(fuzzing))]
/// # #[cfg(feature = "std")] {
/// # use std::str::FromStr;
/// # use secp256k1::{SecretKey, PublicKey};
/// use secp256k1::ecdh::SharedSecret;
///
/// # let pk = PublicKey::from_slice(&[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]).expect("hard coded slice should parse correctly");
/// # let sk = SecretKey::from_str("57f0148f94d13095cfda539d0da0d1541304b678d8b36e243980aab4e1b7cead").unwrap();
///
/// let secret = SharedSecret::new(&pk, &sk);
/// // Here we explicitly display the secret value:
/// assert_eq!(
/// format!("{}", secret.display_secret()),
/// "cf05ae7da039ddce6d56dd57d3000c6dd91c6f1695eae47e05389f11e2467043"
/// );
/// // Also, we can explicitly display with `Debug`:
/// assert_eq!(
/// format!("{:?}", secret.display_secret()),
/// format!("DisplaySecret(\"{}\")", secret.display_secret())
/// );
/// # }
/// ```
#[inline]
pub fn display_secret(&self) -> DisplaySecret {
DisplaySecret { secret: self.secret_bytes() }
}
}