1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
//! A scheduler is initialized with a fixed number of workers. Each worker is
//! driven by a thread. Each worker has a "core" which contains data such as the
//! run queue and other state. When `block_in_place` is called, the worker's
//! "core" is handed off to a new thread allowing the scheduler to continue to
//! make progress while the originating thread blocks.
//!
//! # Shutdown
//!
//! Shutting down the runtime involves the following steps:
//!
//! 1. The Shared::close method is called. This closes the inject queue and
//! OwnedTasks instance and wakes up all worker threads.
//!
//! 2. Each worker thread observes the close signal next time it runs
//! Core::maintenance by checking whether the inject queue is closed.
//! The Core::is_shutdown flag is set to true.
//!
//! 3. The worker thread calls `pre_shutdown` in parallel. Here, the worker
//! will keep removing tasks from OwnedTasks until it is empty. No new
//! tasks can be pushed to the OwnedTasks during or after this step as it
//! was closed in step 1.
//!
//! 5. The workers call Shared::shutdown to enter the single-threaded phase of
//! shutdown. These calls will push their core to Shared::shutdown_cores,
//! and the last thread to push its core will finish the shutdown procedure.
//!
//! 6. The local run queue of each core is emptied, then the inject queue is
//! emptied.
//!
//! At this point, shutdown has completed. It is not possible for any of the
//! collections to contain any tasks at this point, as each collection was
//! closed first, then emptied afterwards.
//!
//! ## Spawns during shutdown
//!
//! When spawning tasks during shutdown, there are two cases:
//!
//! * The spawner observes the OwnedTasks being open, and the inject queue is
//! closed.
//! * The spawner observes the OwnedTasks being closed and doesn't check the
//! inject queue.
//!
//! The first case can only happen if the OwnedTasks::bind call happens before
//! or during step 1 of shutdown. In this case, the runtime will clean up the
//! task in step 3 of shutdown.
//!
//! In the latter case, the task was not spawned and the task is immediately
//! cancelled by the spawner.
//!
//! The correctness of shutdown requires both the inject queue and OwnedTasks
//! collection to have a closed bit. With a close bit on only the inject queue,
//! spawning could run in to a situation where a task is successfully bound long
//! after the runtime has shut down. With a close bit on only the OwnedTasks,
//! the first spawning situation could result in the notification being pushed
//! to the inject queue after step 6 of shutdown, which would leave a task in
//! the inject queue indefinitely. This would be a ref-count cycle and a memory
//! leak.
use crate::coop;
use crate::future::Future;
use crate::loom::rand::seed;
use crate::loom::sync::{Arc, Mutex};
use crate::park::{Park, Unpark};
use crate::runtime;
use crate::runtime::enter::EnterContext;
use crate::runtime::scheduler::multi_thread::{queue, Idle, Parker, Unparker};
use crate::runtime::task::{Inject, JoinHandle, OwnedTasks};
use crate::runtime::{task, Config, HandleInner, MetricsBatch, SchedulerMetrics, WorkerMetrics};
use crate::util::atomic_cell::AtomicCell;
use crate::util::FastRand;
use std::cell::RefCell;
use std::time::Duration;
/// A scheduler worker
pub(super) struct Worker {
/// Reference to shared state
shared: Arc<Shared>,
/// Index holding this worker's remote state
index: usize,
/// Used to hand-off a worker's core to another thread.
core: AtomicCell<Core>,
}
/// Core data
struct Core {
/// Used to schedule bookkeeping tasks every so often.
tick: u32,
/// When a task is scheduled from a worker, it is stored in this slot. The
/// worker will check this slot for a task **before** checking the run
/// queue. This effectively results in the **last** scheduled task to be run
/// next (LIFO). This is an optimization for message passing patterns and
/// helps to reduce latency.
lifo_slot: Option<Notified>,
/// The worker-local run queue.
run_queue: queue::Local<Arc<Shared>>,
/// True if the worker is currently searching for more work. Searching
/// involves attempting to steal from other workers.
is_searching: bool,
/// True if the scheduler is being shutdown
is_shutdown: bool,
/// Parker
///
/// Stored in an `Option` as the parker is added / removed to make the
/// borrow checker happy.
park: Option<Parker>,
/// Batching metrics so they can be submitted to RuntimeMetrics.
metrics: MetricsBatch,
/// Fast random number generator.
rand: FastRand,
}
/// State shared across all workers
pub(super) struct Shared {
/// Handle to the I/O driver, timer, blocking spawner, ...
handle_inner: HandleInner,
/// Per-worker remote state. All other workers have access to this and is
/// how they communicate between each other.
remotes: Box<[Remote]>,
/// Global task queue used for:
/// 1. Submit work to the scheduler while **not** currently on a worker thread.
/// 2. Submit work to the scheduler when a worker run queue is saturated
inject: Inject<Arc<Shared>>,
/// Coordinates idle workers
idle: Idle,
/// Collection of all active tasks spawned onto this executor.
owned: OwnedTasks<Arc<Shared>>,
/// Cores that have observed the shutdown signal
///
/// The core is **not** placed back in the worker to avoid it from being
/// stolen by a thread that was spawned as part of `block_in_place`.
#[allow(clippy::vec_box)] // we're moving an already-boxed value
shutdown_cores: Mutex<Vec<Box<Core>>>,
/// Scheduler configuration options
config: Config,
/// Collects metrics from the runtime.
pub(super) scheduler_metrics: SchedulerMetrics,
pub(super) worker_metrics: Box<[WorkerMetrics]>,
}
/// Used to communicate with a worker from other threads.
struct Remote {
/// Steals tasks from this worker.
steal: queue::Steal<Arc<Shared>>,
/// Unparks the associated worker thread
unpark: Unparker,
}
/// Thread-local context
struct Context {
/// Worker
worker: Arc<Worker>,
/// Core data
core: RefCell<Option<Box<Core>>>,
}
/// Starts the workers
pub(crate) struct Launch(Vec<Arc<Worker>>);
/// Running a task may consume the core. If the core is still available when
/// running the task completes, it is returned. Otherwise, the worker will need
/// to stop processing.
type RunResult = Result<Box<Core>, ()>;
/// A task handle
type Task = task::Task<Arc<Shared>>;
/// A notified task handle
type Notified = task::Notified<Arc<Shared>>;
// Tracks thread-local state
scoped_thread_local!(static CURRENT: Context);
pub(super) fn create(
size: usize,
park: Parker,
handle_inner: HandleInner,
config: Config,
) -> (Arc<Shared>, Launch) {
let mut cores = Vec::with_capacity(size);
let mut remotes = Vec::with_capacity(size);
let mut worker_metrics = Vec::with_capacity(size);
// Create the local queues
for _ in 0..size {
let (steal, run_queue) = queue::local();
let park = park.clone();
let unpark = park.unpark();
cores.push(Box::new(Core {
tick: 0,
lifo_slot: None,
run_queue,
is_searching: false,
is_shutdown: false,
park: Some(park),
metrics: MetricsBatch::new(),
rand: FastRand::new(seed()),
}));
remotes.push(Remote { steal, unpark });
worker_metrics.push(WorkerMetrics::new());
}
let shared = Arc::new(Shared {
handle_inner,
remotes: remotes.into_boxed_slice(),
inject: Inject::new(),
idle: Idle::new(size),
owned: OwnedTasks::new(),
shutdown_cores: Mutex::new(vec![]),
config,
scheduler_metrics: SchedulerMetrics::new(),
worker_metrics: worker_metrics.into_boxed_slice(),
});
let mut launch = Launch(vec![]);
for (index, core) in cores.drain(..).enumerate() {
launch.0.push(Arc::new(Worker {
shared: shared.clone(),
index,
core: AtomicCell::new(Some(core)),
}));
}
(shared, launch)
}
pub(crate) fn block_in_place<F, R>(f: F) -> R
where
F: FnOnce() -> R,
{
// Try to steal the worker core back
struct Reset(coop::Budget);
impl Drop for Reset {
fn drop(&mut self) {
CURRENT.with(|maybe_cx| {
if let Some(cx) = maybe_cx {
let core = cx.worker.core.take();
let mut cx_core = cx.core.borrow_mut();
assert!(cx_core.is_none());
*cx_core = core;
// Reset the task budget as we are re-entering the
// runtime.
coop::set(self.0);
}
});
}
}
let mut had_entered = false;
CURRENT.with(|maybe_cx| {
match (crate::runtime::enter::context(), maybe_cx.is_some()) {
(EnterContext::Entered { .. }, true) => {
// We are on a thread pool runtime thread, so we just need to
// set up blocking.
had_entered = true;
}
(EnterContext::Entered { allow_blocking }, false) => {
// We are on an executor, but _not_ on the thread pool. That is
// _only_ okay if we are in a thread pool runtime's block_on
// method:
if allow_blocking {
had_entered = true;
return;
} else {
// This probably means we are on the current_thread runtime or in a
// LocalSet, where it is _not_ okay to block.
panic!("can call blocking only when running on the multi-threaded runtime");
}
}
(EnterContext::NotEntered, true) => {
// This is a nested call to block_in_place (we already exited).
// All the necessary setup has already been done.
return;
}
(EnterContext::NotEntered, false) => {
// We are outside of the tokio runtime, so blocking is fine.
// We can also skip all of the thread pool blocking setup steps.
return;
}
}
let cx = maybe_cx.expect("no .is_some() == false cases above should lead here");
// Get the worker core. If none is set, then blocking is fine!
let core = match cx.core.borrow_mut().take() {
Some(core) => core,
None => return,
};
// The parker should be set here
assert!(core.park.is_some());
// In order to block, the core must be sent to another thread for
// execution.
//
// First, move the core back into the worker's shared core slot.
cx.worker.core.set(core);
// Next, clone the worker handle and send it to a new thread for
// processing.
//
// Once the blocking task is done executing, we will attempt to
// steal the core back.
let worker = cx.worker.clone();
runtime::spawn_blocking(move || run(worker));
});
if had_entered {
// Unset the current task's budget. Blocking sections are not
// constrained by task budgets.
let _reset = Reset(coop::stop());
crate::runtime::enter::exit(f)
} else {
f()
}
}
impl Launch {
pub(crate) fn launch(mut self) {
for worker in self.0.drain(..) {
runtime::spawn_blocking(move || run(worker));
}
}
}
fn run(worker: Arc<Worker>) {
// Acquire a core. If this fails, then another thread is running this
// worker and there is nothing further to do.
let core = match worker.core.take() {
Some(core) => core,
None => return,
};
// Set the worker context.
let cx = Context {
worker,
core: RefCell::new(None),
};
let _enter = crate::runtime::enter(true);
CURRENT.set(&cx, || {
// This should always be an error. It only returns a `Result` to support
// using `?` to short circuit.
assert!(cx.run(core).is_err());
});
}
impl Context {
fn run(&self, mut core: Box<Core>) -> RunResult {
while !core.is_shutdown {
// Increment the tick
core.tick();
// Run maintenance, if needed
core = self.maintenance(core);
// First, check work available to the current worker.
if let Some(task) = core.next_task(&self.worker) {
core = self.run_task(task, core)?;
continue;
}
// There is no more **local** work to process, try to steal work
// from other workers.
if let Some(task) = core.steal_work(&self.worker) {
core = self.run_task(task, core)?;
} else {
// Wait for work
core = self.park(core);
}
}
core.pre_shutdown(&self.worker);
// Signal shutdown
self.worker.shared.shutdown(core);
Err(())
}
fn run_task(&self, task: Notified, mut core: Box<Core>) -> RunResult {
let task = self.worker.shared.owned.assert_owner(task);
// Make sure the worker is not in the **searching** state. This enables
// another idle worker to try to steal work.
core.transition_from_searching(&self.worker);
// Make the core available to the runtime context
core.metrics.incr_poll_count();
*self.core.borrow_mut() = Some(core);
// Run the task
coop::budget(|| {
task.run();
// As long as there is budget remaining and a task exists in the
// `lifo_slot`, then keep running.
loop {
// Check if we still have the core. If not, the core was stolen
// by another worker.
let mut core = match self.core.borrow_mut().take() {
Some(core) => core,
None => return Err(()),
};
// Check for a task in the LIFO slot
let task = match core.lifo_slot.take() {
Some(task) => task,
None => return Ok(core),
};
if coop::has_budget_remaining() {
// Run the LIFO task, then loop
core.metrics.incr_poll_count();
*self.core.borrow_mut() = Some(core);
let task = self.worker.shared.owned.assert_owner(task);
task.run();
} else {
// Not enough budget left to run the LIFO task, push it to
// the back of the queue and return.
core.run_queue
.push_back(task, self.worker.inject(), &mut core.metrics);
return Ok(core);
}
}
})
}
fn maintenance(&self, mut core: Box<Core>) -> Box<Core> {
if core.tick % self.worker.shared.config.event_interval == 0 {
// Call `park` with a 0 timeout. This enables the I/O driver, timer, ...
// to run without actually putting the thread to sleep.
core = self.park_timeout(core, Some(Duration::from_millis(0)));
// Run regularly scheduled maintenance
core.maintenance(&self.worker);
}
core
}
/// Parks the worker thread while waiting for tasks to execute.
///
/// This function checks if indeed there's no more work left to be done before parking.
/// Also important to notice that, before parking, the worker thread will try to take
/// ownership of the Driver (IO/Time) and dispatch any events that might have fired.
/// Whenever a worker thread executes the Driver loop, all waken tasks are scheduled
/// in its own local queue until the queue saturates (ntasks > LOCAL_QUEUE_CAPACITY).
/// When the local queue is saturated, the overflow tasks are added to the injection queue
/// from where other workers can pick them up.
/// Also, we rely on the workstealing algorithm to spread the tasks amongst workers
/// after all the IOs get dispatched
fn park(&self, mut core: Box<Core>) -> Box<Core> {
if let Some(f) = &self.worker.shared.config.before_park {
f();
}
if core.transition_to_parked(&self.worker) {
while !core.is_shutdown {
core.metrics.about_to_park();
core = self.park_timeout(core, None);
core.metrics.returned_from_park();
// Run regularly scheduled maintenance
core.maintenance(&self.worker);
if core.transition_from_parked(&self.worker) {
break;
}
}
}
if let Some(f) = &self.worker.shared.config.after_unpark {
f();
}
core
}
fn park_timeout(&self, mut core: Box<Core>, duration: Option<Duration>) -> Box<Core> {
// Take the parker out of core
let mut park = core.park.take().expect("park missing");
// Store `core` in context
*self.core.borrow_mut() = Some(core);
// Park thread
if let Some(timeout) = duration {
park.park_timeout(timeout).expect("park failed");
} else {
park.park().expect("park failed");
}
// Remove `core` from context
core = self.core.borrow_mut().take().expect("core missing");
// Place `park` back in `core`
core.park = Some(park);
// If there are tasks available to steal, but this worker is not
// looking for tasks to steal, notify another worker.
if !core.is_searching && core.run_queue.is_stealable() {
self.worker.shared.notify_parked();
}
core
}
}
impl Core {
/// Increment the tick
fn tick(&mut self) {
self.tick = self.tick.wrapping_add(1);
}
/// Return the next notified task available to this worker.
fn next_task(&mut self, worker: &Worker) -> Option<Notified> {
if self.tick % worker.shared.config.global_queue_interval == 0 {
worker.inject().pop().or_else(|| self.next_local_task())
} else {
self.next_local_task().or_else(|| worker.inject().pop())
}
}
fn next_local_task(&mut self) -> Option<Notified> {
self.lifo_slot.take().or_else(|| self.run_queue.pop())
}
/// Function responsible for stealing tasks from another worker
///
/// Note: Only if less than half the workers are searching for tasks to steal
/// a new worker will actually try to steal. The idea is to make sure not all
/// workers will be trying to steal at the same time.
fn steal_work(&mut self, worker: &Worker) -> Option<Notified> {
if !self.transition_to_searching(worker) {
return None;
}
let num = worker.shared.remotes.len();
// Start from a random worker
let start = self.rand.fastrand_n(num as u32) as usize;
for i in 0..num {
let i = (start + i) % num;
// Don't steal from ourself! We know we don't have work.
if i == worker.index {
continue;
}
let target = &worker.shared.remotes[i];
if let Some(task) = target
.steal
.steal_into(&mut self.run_queue, &mut self.metrics)
{
return Some(task);
}
}
// Fallback on checking the global queue
worker.shared.inject.pop()
}
fn transition_to_searching(&mut self, worker: &Worker) -> bool {
if !self.is_searching {
self.is_searching = worker.shared.idle.transition_worker_to_searching();
}
self.is_searching
}
fn transition_from_searching(&mut self, worker: &Worker) {
if !self.is_searching {
return;
}
self.is_searching = false;
worker.shared.transition_worker_from_searching();
}
/// Prepares the worker state for parking.
///
/// Returns true if the transition happened, false if there is work to do first.
fn transition_to_parked(&mut self, worker: &Worker) -> bool {
// Workers should not park if they have work to do
if self.lifo_slot.is_some() || self.run_queue.has_tasks() {
return false;
}
// When the final worker transitions **out** of searching to parked, it
// must check all the queues one last time in case work materialized
// between the last work scan and transitioning out of searching.
let is_last_searcher = worker
.shared
.idle
.transition_worker_to_parked(worker.index, self.is_searching);
// The worker is no longer searching. Setting this is the local cache
// only.
self.is_searching = false;
if is_last_searcher {
worker.shared.notify_if_work_pending();
}
true
}
/// Returns `true` if the transition happened.
fn transition_from_parked(&mut self, worker: &Worker) -> bool {
// If a task is in the lifo slot, then we must unpark regardless of
// being notified
if self.lifo_slot.is_some() {
// When a worker wakes, it should only transition to the "searching"
// state when the wake originates from another worker *or* a new task
// is pushed. We do *not* want the worker to transition to "searching"
// when it wakes when the I/O driver receives new events.
self.is_searching = !worker.shared.idle.unpark_worker_by_id(worker.index);
return true;
}
if worker.shared.idle.is_parked(worker.index) {
return false;
}
// When unparked, the worker is in the searching state.
self.is_searching = true;
true
}
/// Runs maintenance work such as checking the pool's state.
fn maintenance(&mut self, worker: &Worker) {
self.metrics
.submit(&worker.shared.worker_metrics[worker.index]);
if !self.is_shutdown {
// Check if the scheduler has been shutdown
self.is_shutdown = worker.inject().is_closed();
}
}
/// Signals all tasks to shut down, and waits for them to complete. Must run
/// before we enter the single-threaded phase of shutdown processing.
fn pre_shutdown(&mut self, worker: &Worker) {
// Signal to all tasks to shut down.
worker.shared.owned.close_and_shutdown_all();
self.metrics
.submit(&worker.shared.worker_metrics[worker.index]);
}
/// Shuts down the core.
fn shutdown(&mut self) {
// Take the core
let mut park = self.park.take().expect("park missing");
// Drain the queue
while self.next_local_task().is_some() {}
park.shutdown();
}
}
impl Worker {
/// Returns a reference to the scheduler's injection queue.
fn inject(&self) -> &Inject<Arc<Shared>> {
&self.shared.inject
}
}
impl task::Schedule for Arc<Shared> {
fn release(&self, task: &Task) -> Option<Task> {
self.owned.remove(task)
}
fn schedule(&self, task: Notified) {
(**self).schedule(task, false);
}
fn yield_now(&self, task: Notified) {
(**self).schedule(task, true);
}
}
impl Shared {
pub(crate) fn as_handle_inner(&self) -> &HandleInner {
&self.handle_inner
}
pub(super) fn bind_new_task<T>(
me: &Arc<Self>,
future: T,
id: crate::runtime::task::Id,
) -> JoinHandle<T::Output>
where
T: Future + Send + 'static,
T::Output: Send + 'static,
{
let (handle, notified) = me.owned.bind(future, me.clone(), id);
if let Some(notified) = notified {
me.schedule(notified, false);
}
handle
}
pub(super) fn schedule(&self, task: Notified, is_yield: bool) {
CURRENT.with(|maybe_cx| {
if let Some(cx) = maybe_cx {
// Make sure the task is part of the **current** scheduler.
if self.ptr_eq(&cx.worker.shared) {
// And the current thread still holds a core
if let Some(core) = cx.core.borrow_mut().as_mut() {
self.schedule_local(core, task, is_yield);
return;
}
}
}
// Otherwise, use the inject queue.
self.inject.push(task);
self.scheduler_metrics.inc_remote_schedule_count();
self.notify_parked();
})
}
fn schedule_local(&self, core: &mut Core, task: Notified, is_yield: bool) {
core.metrics.inc_local_schedule_count();
// Spawning from the worker thread. If scheduling a "yield" then the
// task must always be pushed to the back of the queue, enabling other
// tasks to be executed. If **not** a yield, then there is more
// flexibility and the task may go to the front of the queue.
let should_notify = if is_yield || self.config.disable_lifo_slot {
core.run_queue
.push_back(task, &self.inject, &mut core.metrics);
true
} else {
// Push to the LIFO slot
let prev = core.lifo_slot.take();
let ret = prev.is_some();
if let Some(prev) = prev {
core.run_queue
.push_back(prev, &self.inject, &mut core.metrics);
}
core.lifo_slot = Some(task);
ret
};
// Only notify if not currently parked. If `park` is `None`, then the
// scheduling is from a resource driver. As notifications often come in
// batches, the notification is delayed until the park is complete.
if should_notify && core.park.is_some() {
self.notify_parked();
}
}
pub(super) fn close(&self) {
if self.inject.close() {
self.notify_all();
}
}
fn notify_parked(&self) {
if let Some(index) = self.idle.worker_to_notify() {
self.remotes[index].unpark.unpark();
}
}
fn notify_all(&self) {
for remote in &self.remotes[..] {
remote.unpark.unpark();
}
}
fn notify_if_work_pending(&self) {
for remote in &self.remotes[..] {
if !remote.steal.is_empty() {
self.notify_parked();
return;
}
}
if !self.inject.is_empty() {
self.notify_parked();
}
}
fn transition_worker_from_searching(&self) {
if self.idle.transition_worker_from_searching() {
// We are the final searching worker. Because work was found, we
// need to notify another worker.
self.notify_parked();
}
}
/// Signals that a worker has observed the shutdown signal and has replaced
/// its core back into its handle.
///
/// If all workers have reached this point, the final cleanup is performed.
fn shutdown(&self, core: Box<Core>) {
let mut cores = self.shutdown_cores.lock();
cores.push(core);
if cores.len() != self.remotes.len() {
return;
}
debug_assert!(self.owned.is_empty());
for mut core in cores.drain(..) {
core.shutdown();
}
// Drain the injection queue
//
// We already shut down every task, so we can simply drop the tasks.
while let Some(task) = self.inject.pop() {
drop(task);
}
}
fn ptr_eq(&self, other: &Shared) -> bool {
std::ptr::eq(self, other)
}
}
impl crate::runtime::ToHandle for Arc<Shared> {
fn to_handle(&self) -> crate::runtime::Handle {
use crate::runtime::scheduler::multi_thread::Spawner;
use crate::runtime::{self, Handle};
Handle {
spawner: runtime::Spawner::MultiThread(Spawner {
shared: self.clone(),
}),
}
}
}
cfg_metrics! {
impl Shared {
pub(super) fn injection_queue_depth(&self) -> usize {
self.inject.len()
}
pub(super) fn worker_local_queue_depth(&self, worker: usize) -> usize {
self.remotes[worker].steal.len()
}
}
}