1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
use parity_scale_codec::{Decode, Encode};
use polkadot_node_primitives::{AvailableData, Proof};
use polkadot_primitives::v2::{BlakeTwo256, Hash as H256, HashT};
use sp_core::Blake2Hasher;
use sp_trie::{
trie_types::{TrieDBBuilder, TrieDBMutBuilderV0 as TrieDBMutBuilder},
LayoutV0, MemoryDB, Trie, TrieMut, EMPTY_PREFIX,
};
use thiserror::Error;
use novelpoly::{CodeParams, WrappedShard};
const MAX_VALIDATORS: usize = novelpoly::f2e16::FIELD_SIZE;
#[derive(Debug, Clone, PartialEq, Error)]
pub enum Error {
#[error("There are too many validators")]
TooManyValidators,
#[error("Expected at least 2 validators")]
NotEnoughValidators,
#[error("Validator count mismatches between encoding and decoding")]
WrongValidatorCount,
#[error("Not enough chunks to reconstruct message")]
NotEnoughChunks,
#[error("Too many chunks present")]
TooManyChunks,
#[error("Chunks are not uniform, mismatch in length or are zero sized")]
NonUniformChunks,
#[error("Uneven length is not valid for field GF(2^16)")]
UnevenLength,
#[error("Chunk is out of bounds: {chunk_index} not included in 0..{n_validators}")]
ChunkIndexOutOfBounds { chunk_index: usize, n_validators: usize },
#[error("Reconstructed payload invalid")]
BadPayload,
#[error("Invalid branch proof")]
InvalidBranchProof,
#[error("Branch is out of bounds")]
BranchOutOfBounds,
#[error("An unknown error has appeared when reconstructing erasure code chunks")]
UnknownReconstruction,
#[error("An unknown error has appeared when deriving code parameters from validator count")]
UnknownCodeParam,
}
pub const fn recovery_threshold(n_validators: usize) -> Result<usize, Error> {
if n_validators > MAX_VALIDATORS {
return Err(Error::TooManyValidators)
}
if n_validators <= 1 {
return Err(Error::NotEnoughValidators)
}
let needed = n_validators.saturating_sub(1) / 3;
Ok(needed + 1)
}
fn code_params(n_validators: usize) -> Result<CodeParams, Error> {
let n_wanted = n_validators;
let k_wanted = recovery_threshold(n_wanted)?;
if n_wanted > MAX_VALIDATORS as usize {
return Err(Error::TooManyValidators)
}
CodeParams::derive_parameters(n_wanted, k_wanted).map_err(|e| match e {
novelpoly::Error::WantedShardCountTooHigh(_) => Error::TooManyValidators,
novelpoly::Error::WantedShardCountTooLow(_) => Error::NotEnoughValidators,
_ => Error::UnknownCodeParam,
})
}
pub fn obtain_chunks_v1(n_validators: usize, data: &AvailableData) -> Result<Vec<Vec<u8>>, Error> {
obtain_chunks(n_validators, data)
}
pub fn obtain_chunks<T: Encode>(n_validators: usize, data: &T) -> Result<Vec<Vec<u8>>, Error> {
let params = code_params(n_validators)?;
let encoded = data.encode();
if encoded.is_empty() {
return Err(Error::BadPayload)
}
let shards = params
.make_encoder()
.encode::<WrappedShard>(&encoded[..])
.expect("Payload non-empty, shard sizes are uniform, and validator numbers checked; qed");
Ok(shards.into_iter().map(|w: WrappedShard| w.into_inner()).collect())
}
pub fn reconstruct_v1<'a, I: 'a>(n_validators: usize, chunks: I) -> Result<AvailableData, Error>
where
I: IntoIterator<Item = (&'a [u8], usize)>,
{
reconstruct(n_validators, chunks)
}
pub fn reconstruct<'a, I: 'a, T: Decode>(n_validators: usize, chunks: I) -> Result<T, Error>
where
I: IntoIterator<Item = (&'a [u8], usize)>,
{
let params = code_params(n_validators)?;
let mut received_shards: Vec<Option<WrappedShard>> = vec![None; n_validators];
let mut shard_len = None;
for (chunk_data, chunk_idx) in chunks.into_iter().take(n_validators) {
if chunk_idx >= n_validators {
return Err(Error::ChunkIndexOutOfBounds { chunk_index: chunk_idx, n_validators })
}
let shard_len = shard_len.get_or_insert_with(|| chunk_data.len());
if *shard_len % 2 != 0 {
return Err(Error::UnevenLength)
}
if *shard_len != chunk_data.len() || *shard_len == 0 {
return Err(Error::NonUniformChunks)
}
received_shards[chunk_idx] = Some(WrappedShard::new(chunk_data.to_vec()));
}
let res = params.make_encoder().reconstruct(received_shards);
let payload_bytes = match res {
Err(e) => match e {
novelpoly::Error::NeedMoreShards { .. } => return Err(Error::NotEnoughChunks),
novelpoly::Error::ParamterMustBePowerOf2 { .. } => return Err(Error::UnevenLength),
novelpoly::Error::WantedShardCountTooHigh(_) => return Err(Error::TooManyValidators),
novelpoly::Error::WantedShardCountTooLow(_) => return Err(Error::NotEnoughValidators),
novelpoly::Error::PayloadSizeIsZero { .. } => return Err(Error::BadPayload),
novelpoly::Error::InconsistentShardLengths { .. } =>
return Err(Error::NonUniformChunks),
_ => return Err(Error::UnknownReconstruction),
},
Ok(payload_bytes) => payload_bytes,
};
Decode::decode(&mut &payload_bytes[..]).or_else(|_e| Err(Error::BadPayload))
}
pub struct Branches<'a, I> {
trie_storage: MemoryDB<Blake2Hasher>,
root: H256,
chunks: &'a [I],
current_pos: usize,
}
impl<'a, I: AsRef<[u8]>> Branches<'a, I> {
pub fn root(&self) -> H256 {
self.root.clone()
}
}
impl<'a, I: AsRef<[u8]>> Iterator for Branches<'a, I> {
type Item = (Proof, &'a [u8]);
fn next(&mut self) -> Option<Self::Item> {
use sp_trie::Recorder;
let mut recorder = Recorder::<LayoutV0<Blake2Hasher>>::new();
let res = {
let trie = TrieDBBuilder::new(&self.trie_storage, &self.root)
.with_recorder(&mut recorder)
.build();
(self.current_pos as u32).using_encoded(|s| trie.get(s))
};
match res.expect("all nodes in trie present; qed") {
Some(_) => {
let nodes: Vec<Vec<u8>> = recorder.drain().into_iter().map(|r| r.data).collect();
let chunk = self.chunks.get(self.current_pos).expect(
"there is a one-to-one mapping of chunks to valid merkle branches; qed",
);
self.current_pos += 1;
Proof::try_from(nodes).ok().map(|proof| (proof, chunk.as_ref()))
},
None => None,
}
}
}
pub fn branches<'a, I: 'a>(chunks: &'a [I]) -> Branches<'a, I>
where
I: AsRef<[u8]>,
{
let mut trie_storage: MemoryDB<Blake2Hasher> = MemoryDB::default();
let mut root = H256::default();
{
let mut trie = TrieDBMutBuilder::new(&mut trie_storage, &mut root).build();
for (i, chunk) in chunks.as_ref().iter().enumerate() {
(i as u32).using_encoded(|encoded_index| {
let chunk_hash = BlakeTwo256::hash(chunk.as_ref());
trie.insert(encoded_index, chunk_hash.as_ref())
.expect("a fresh trie stored in memory cannot have errors loading nodes; qed");
})
}
}
Branches { trie_storage, root, chunks, current_pos: 0 }
}
pub fn branch_hash(root: &H256, branch_nodes: &Proof, index: usize) -> Result<H256, Error> {
let mut trie_storage: MemoryDB<Blake2Hasher> = MemoryDB::default();
for node in branch_nodes.iter() {
(&mut trie_storage as &mut sp_trie::HashDB<_>).insert(EMPTY_PREFIX, node);
}
let trie = TrieDBBuilder::new(&trie_storage, &root).build();
let res = (index as u32).using_encoded(|key| {
trie.get_with(key, |raw_hash: &[u8]| H256::decode(&mut &raw_hash[..]))
});
match res {
Ok(Some(Ok(hash))) => Ok(hash),
Ok(Some(Err(_))) => Err(Error::InvalidBranchProof), Ok(None) => Err(Error::BranchOutOfBounds),
Err(_) => Err(Error::InvalidBranchProof),
}
}
struct ShardInput<'a, I> {
remaining_len: usize,
shards: I,
cur_shard: Option<(&'a [u8], usize)>,
}
impl<'a, I: Iterator<Item = &'a [u8]>> parity_scale_codec::Input for ShardInput<'a, I> {
fn remaining_len(&mut self) -> Result<Option<usize>, parity_scale_codec::Error> {
Ok(Some(self.remaining_len))
}
fn read(&mut self, into: &mut [u8]) -> Result<(), parity_scale_codec::Error> {
let mut read_bytes = 0;
loop {
if read_bytes == into.len() {
break
}
let cur_shard = self.cur_shard.take().or_else(|| self.shards.next().map(|s| (s, 0)));
let (active_shard, mut in_shard) = match cur_shard {
Some((s, i)) => (s, i),
None => break,
};
if in_shard >= active_shard.len() {
continue
}
let remaining_len_out = into.len() - read_bytes;
let remaining_len_shard = active_shard.len() - in_shard;
let write_len = std::cmp::min(remaining_len_out, remaining_len_shard);
into[read_bytes..][..write_len].copy_from_slice(&active_shard[in_shard..][..write_len]);
in_shard += write_len;
read_bytes += write_len;
self.cur_shard = Some((active_shard, in_shard))
}
self.remaining_len -= read_bytes;
if read_bytes == into.len() {
Ok(())
} else {
Err("slice provided too big for input".into())
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use polkadot_node_primitives::{AvailableData, BlockData, PoV};
const KEY_INDEX_NIBBLE_SIZE: usize = 4;
#[test]
fn field_order_is_right_size() {
assert_eq!(MAX_VALIDATORS, 65536);
}
#[test]
fn round_trip_works() {
let pov = PoV { block_data: BlockData((0..255).collect()) };
let available_data = AvailableData { pov: pov.into(), validation_data: Default::default() };
let chunks = obtain_chunks(10, &available_data).unwrap();
assert_eq!(chunks.len(), 10);
let reconstructed: AvailableData = reconstruct(
10,
[(&*chunks[1], 1), (&*chunks[4], 4), (&*chunks[6], 6), (&*chunks[9], 9)]
.iter()
.cloned(),
)
.unwrap();
assert_eq!(reconstructed, available_data);
}
#[test]
fn reconstruct_does_not_panic_on_low_validator_count() {
let reconstructed = reconstruct_v1(1, [].iter().cloned());
assert_eq!(reconstructed, Err(Error::NotEnoughValidators));
}
fn generate_trie_and_generate_proofs(magnitude: u32) {
let n_validators = 2_u32.pow(magnitude) as usize;
let pov = PoV { block_data: BlockData(vec![2; n_validators / KEY_INDEX_NIBBLE_SIZE]) };
let available_data = AvailableData { pov: pov.into(), validation_data: Default::default() };
let chunks = obtain_chunks(magnitude as usize, &available_data).unwrap();
assert_eq!(chunks.len() as u32, magnitude);
let branches = branches(chunks.as_ref());
let root = branches.root();
let proofs: Vec<_> = branches.map(|(proof, _)| proof).collect();
assert_eq!(proofs.len() as u32, magnitude);
for (i, proof) in proofs.into_iter().enumerate() {
let encode = Encode::encode(&proof);
let decode = Decode::decode(&mut &encode[..]).unwrap();
assert_eq!(proof, decode);
assert_eq!(encode, Encode::encode(&decode));
assert_eq!(branch_hash(&root, &proof, i).unwrap(), BlakeTwo256::hash(&chunks[i]));
}
}
#[test]
fn roundtrip_proof_encoding() {
for i in 2..16 {
generate_trie_and_generate_proofs(i);
}
}
}