1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
//! A frontend for building Cranelift IR from other languages.
use crate::ssa::{SSABuilder, SideEffects};
use crate::variable::Variable;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntitySet, SecondaryMap};
use cranelift_codegen::ir;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{
    types, AbiParam, Block, DataFlowGraph, ExtFuncData, ExternalName, FuncRef, Function,
    GlobalValue, GlobalValueData, Heap, HeapData, Inst, InstBuilder, InstBuilderBase,
    InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, SigRef, Signature, StackSlot,
    StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments, ValueLabelStart,
};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_codegen::packed_option::PackedOption;
use std::convert::TryInto; // FIXME: Remove in edition2021

/// Structure used for translating a series of functions into Cranelift IR.
///
/// In order to reduce memory reallocations when compiling multiple functions,
/// `FunctionBuilderContext` holds various data structures which are cleared between
/// functions, rather than dropped, preserving the underlying allocations.
pub struct FunctionBuilderContext {
    ssa: SSABuilder,
    blocks: SecondaryMap<Block, BlockData>,
    types: SecondaryMap<Variable, Type>,
}

/// Temporary object used to build a single Cranelift IR `Function`.
pub struct FunctionBuilder<'a> {
    /// The function currently being built.
    /// This field is public so the function can be re-borrowed.
    pub func: &'a mut Function,

    /// Source location to assign to all new instructions.
    srcloc: ir::SourceLoc,

    func_ctx: &'a mut FunctionBuilderContext,
    position: PackedOption<Block>,
}

#[derive(Clone, Default)]
struct BlockData {
    /// A Block is "pristine" iff no instructions have been added since the last
    /// call to `switch_to_block()`.
    pristine: bool,

    /// A Block is "filled" iff a terminator instruction has been inserted since
    /// the last call to `switch_to_block()`.
    ///
    /// A filled block cannot be pristine.
    filled: bool,

    /// Count of parameters not supplied implicitly by the SSABuilder.
    user_param_count: usize,
}

impl FunctionBuilderContext {
    /// Creates a FunctionBuilderContext structure. The structure is automatically cleared after
    /// each [`FunctionBuilder`](struct.FunctionBuilder.html) completes translating a function.
    pub fn new() -> Self {
        Self {
            ssa: SSABuilder::new(),
            blocks: SecondaryMap::new(),
            types: SecondaryMap::new(),
        }
    }

    fn clear(&mut self) {
        self.ssa.clear();
        self.blocks.clear();
        self.types.clear();
    }

    fn is_empty(&self) -> bool {
        self.ssa.is_empty() && self.blocks.is_empty() && self.types.is_empty()
    }
}

/// Implementation of the [`InstBuilder`](cranelift_codegen::ir::InstBuilder) that has
/// one convenience method per Cranelift IR instruction.
pub struct FuncInstBuilder<'short, 'long: 'short> {
    builder: &'short mut FunctionBuilder<'long>,
    block: Block,
}

impl<'short, 'long> FuncInstBuilder<'short, 'long> {
    fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self {
        Self { builder, block }
    }
}

impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> {
    fn data_flow_graph(&self) -> &DataFlowGraph {
        &self.builder.func.dfg
    }

    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        &mut self.builder.func.dfg
    }

    // This implementation is richer than `InsertBuilder` because we use the data of the
    // instruction being inserted to add related info to the DFG and the SSA building system,
    // and perform debug sanity checks.
    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
        // We only insert the Block in the layout when an instruction is added to it
        self.builder.ensure_inserted_block();

        let inst = self.builder.func.dfg.make_inst(data.clone());
        self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
        self.builder.func.layout.append_inst(inst, self.block);
        if !self.builder.srcloc.is_default() {
            self.builder.func.srclocs[inst] = self.builder.srcloc;
        }

        if data.opcode().is_branch() {
            match data.branch_destination() {
                Some(dest_block) => {
                    // If the user has supplied jump arguments we must adapt the arguments of
                    // the destination block
                    self.builder.declare_successor(dest_block, inst);
                }
                None => {
                    // branch_destination() doesn't detect jump_tables
                    // If jump table we declare all entries successor
                    if let InstructionData::BranchTable {
                        table, destination, ..
                    } = data
                    {
                        // Unlike all other jumps/branches, jump tables are
                        // capable of having the same successor appear
                        // multiple times, so we must deduplicate.
                        let mut unique = EntitySet::<Block>::new();
                        for dest_block in self
                            .builder
                            .func
                            .jump_tables
                            .get(table)
                            .expect("you are referencing an undeclared jump table")
                            .iter()
                            .filter(|&dest_block| unique.insert(*dest_block))
                        {
                            // Call `declare_block_predecessor` instead of `declare_successor` for
                            // avoiding the borrow checker.
                            self.builder.func_ctx.ssa.declare_block_predecessor(
                                *dest_block,
                                self.builder.position.unwrap(),
                                inst,
                            );
                        }
                        self.builder.declare_successor(destination, inst);
                    }
                }
            }
        }

        if data.opcode().is_terminator() {
            self.builder.fill_current_block()
        }
        (inst, &mut self.builder.func.dfg)
    }
}

/// This module allows you to create a function in Cranelift IR in a straightforward way, hiding
/// all the complexity of its internal representation.
///
/// The module is parametrized by one type which is the representation of variables in your
/// origin language. It offers a way to conveniently append instruction to your program flow.
/// You are responsible to split your instruction flow into extended blocks (declared with
/// `create_block`) whose properties are:
///
/// - branch and jump instructions can only point at the top of extended blocks;
/// - the last instruction of each block is a terminator instruction which has no natural successor,
///   and those instructions can only appear at the end of extended blocks.
///
/// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created
/// as results of other Cranelift IR instructions. To be able to create variables redefined multiple
/// times in your program, use the `def_var` and `use_var` command, that will maintain the
/// correspondence between your variables and Cranelift IR SSA values.
///
/// The first block for which you call `switch_to_block` will be assumed to be the beginning of
/// the function.
///
/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it
/// modifies with the information stored in the mutable borrowed
/// [`FunctionBuilderContext`](struct.FunctionBuilderContext.html). The function passed in
/// argument should be newly created with
/// [`Function::with_name_signature()`](Function::with_name_signature), whereas the
/// `FunctionBuilderContext` can be kept as is between two function translations.
///
/// # Errors
///
/// The functions below will panic in debug mode whenever you try to modify the Cranelift IR
/// function in a way that violate the coherence of the code. For instance: switching to a new
/// `Block` when you haven't filled the current one with a terminator instruction, inserting a
/// return instruction with arguments that don't match the function's signature.
impl<'a> FunctionBuilder<'a> {
    /// Creates a new FunctionBuilder structure that will operate on a `Function` using a
    /// `FunctionBuilderContext`.
    pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self {
        debug_assert!(func_ctx.is_empty());
        Self {
            func,
            srcloc: Default::default(),
            func_ctx,
            position: Default::default(),
        }
    }

    /// Get the block that this builder is currently at.
    pub fn current_block(&self) -> Option<Block> {
        self.position.expand()
    }

    /// Set the source location that should be assigned to all new instructions.
    pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
        self.srcloc = srcloc;
    }

    /// Creates a new `Block` and returns its reference.
    pub fn create_block(&mut self) -> Block {
        let block = self.func.dfg.make_block();
        self.func_ctx.ssa.declare_block(block);
        self.func_ctx.blocks[block] = BlockData {
            filled: false,
            pristine: true,
            user_param_count: 0,
        };
        block
    }

    /// Mark a block as "cold".
    ///
    /// This will try to move it out of the ordinary path of execution
    /// when lowered to machine code.
    pub fn set_cold_block(&mut self, block: Block) {
        self.func.layout.set_cold(block);
    }

    /// Insert `block` in the layout *after* the existing block `after`.
    pub fn insert_block_after(&mut self, block: Block, after: Block) {
        self.func.layout.insert_block_after(block, after);
    }

    /// After the call to this function, new instructions will be inserted into the designated
    /// block, in the order they are declared. You must declare the types of the Block arguments
    /// you will use here.
    ///
    /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate
    /// successor), the block will be declared filled and it will not be possible to append
    /// instructions to it.
    pub fn switch_to_block(&mut self, block: Block) {
        // First we check that the previous block has been filled.
        debug_assert!(
            self.position.is_none()
                || self.is_unreachable()
                || self.is_pristine()
                || self.is_filled(),
            "you have to fill your block before switching"
        );
        // We cannot switch to a filled block
        debug_assert!(
            !self.func_ctx.blocks[block].filled,
            "you cannot switch to a block which is already filled"
        );

        // Then we change the cursor position.
        self.position = PackedOption::from(block);
    }

    /// Declares that all the predecessors of this block are known.
    ///
    /// Function to call with `block` as soon as the last branch instruction to `block` has been
    /// created. Forgetting to call this method on every block will cause inconsistencies in the
    /// produced functions.
    pub fn seal_block(&mut self, block: Block) {
        let side_effects = self.func_ctx.ssa.seal_block(block, self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// Effectively calls seal_block on all unsealed blocks in the function.
    ///
    /// It's more efficient to seal `Block`s as soon as possible, during
    /// translation, but for frontends where this is impractical to do, this
    /// function can be used at the end of translating all blocks to ensure
    /// that everything is sealed.
    pub fn seal_all_blocks(&mut self) {
        let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func);
        self.handle_ssa_side_effects(side_effects);
    }

    /// In order to use a variable in a `use_var`, you need to declare its type with this method.
    pub fn declare_var(&mut self, var: Variable, ty: Type) {
        debug_assert_eq!(
            self.func_ctx.types[var],
            types::INVALID,
            "variable {:?} is declared twice",
            var
        );
        self.func_ctx.types[var] = ty;
    }

    /// Returns the Cranelift IR value corresponding to the utilization at the current program
    /// position of a previously defined user variable.
    pub fn use_var(&mut self, var: Variable) -> Value {
        let (val, side_effects) = {
            let ty = *self.func_ctx.types.get(var).unwrap_or_else(|| {
                panic!(
                    "variable {:?} is used but its type has not been declared",
                    var
                )
            });
            debug_assert_ne!(
                ty,
                types::INVALID,
                "variable {:?} is used but its type has not been declared",
                var
            );
            self.func_ctx
                .ssa
                .use_var(self.func, var, ty, self.position.unwrap())
        };
        self.handle_ssa_side_effects(side_effects);
        val
    }

    /// Register a new definition of a user variable. The type of the value must be
    /// the same as the type registered for the variable.
    pub fn def_var(&mut self, var: Variable, val: Value) {
        debug_assert_eq!(
            *self.func_ctx.types.get(var).unwrap_or_else(|| panic!(
                "variable {:?} is used but its type has not been declared",
                var
            )),
            self.func.dfg.value_type(val),
            "declared type of variable {:?} doesn't match type of value {}",
            var,
            val
        );

        self.func_ctx.ssa.def_var(var, val, self.position.unwrap());
    }

    /// Set label for Value
    ///
    /// This will not do anything unless `func.dfg.collect_debug_info` is called first.
    pub fn set_val_label(&mut self, val: Value, label: ValueLabel) {
        if let Some(values_labels) = self.func.dfg.values_labels.as_mut() {
            use crate::hash_map::Entry;

            let start = ValueLabelStart {
                from: self.srcloc,
                label,
            };

            match values_labels.entry(val) {
                Entry::Occupied(mut e) => match e.get_mut() {
                    ValueLabelAssignments::Starts(starts) => starts.push(start),
                    _ => panic!("Unexpected ValueLabelAssignments at this stage"),
                },
                Entry::Vacant(e) => {
                    e.insert(ValueLabelAssignments::Starts(vec![start]));
                }
            }
        }
    }

    /// Creates a jump table in the function, to be used by `br_table` instructions.
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.func.create_jump_table(data)
    }

    /// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
    /// `stack_addr` instructions.
    pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.func.create_stack_slot(data)
    }

    /// Adds a signature which can later be used to declare an external function import.
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.func.import_signature(signature)
    }

    /// Declare an external function import.
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.func.import_function(data)
    }

    /// Declares a global value accessible to the function.
    pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
        self.func.create_global_value(data)
    }

    /// Declares a heap accessible to the function.
    pub fn create_heap(&mut self, data: HeapData) -> Heap {
        self.func.create_heap(data)
    }

    /// Returns an object with the [`InstBuilder`](cranelift_codegen::ir::InstBuilder)
    /// trait that allows to conveniently append an instruction to the current `Block` being built.
    pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> {
        let block = self
            .position
            .expect("Please call switch_to_block before inserting instructions");
        FuncInstBuilder::new(self, block)
    }

    /// Make sure that the current block is inserted in the layout.
    pub fn ensure_inserted_block(&mut self) {
        let block = self.position.unwrap();
        if self.func_ctx.blocks[block].pristine {
            if !self.func.layout.is_block_inserted(block) {
                self.func.layout.append_block(block);
            }
            self.func_ctx.blocks[block].pristine = false;
        } else {
            debug_assert!(
                !self.func_ctx.blocks[block].filled,
                "you cannot add an instruction to a block already filled"
            );
        }
    }

    /// Returns a `FuncCursor` pointed at the current position ready for inserting instructions.
    ///
    /// This can be used to insert SSA code that doesn't need to access locals and that doesn't
    /// need to know about `FunctionBuilder` at all.
    pub fn cursor(&mut self) -> FuncCursor {
        self.ensure_inserted_block();
        FuncCursor::new(self.func)
            .with_srcloc(self.srcloc)
            .at_bottom(self.position.unwrap())
    }

    /// Append parameters to the given `Block` corresponding to the function
    /// parameters. This can be used to set up the block parameters for the
    /// entry block.
    pub fn append_block_params_for_function_params(&mut self, block: Block) {
        debug_assert!(
            !self.func_ctx.ssa.has_any_predecessors(block),
            "block parameters for function parameters should only be added to the entry block"
        );

        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        let user_param_count = &mut self.func_ctx.blocks[block].user_param_count;
        for argtyp in &self.func.signature.params {
            *user_param_count += 1;
            self.func.dfg.append_block_param(block, argtyp.value_type);
        }
    }

    /// Append parameters to the given `Block` corresponding to the function
    /// return values. This can be used to set up the block parameters for a
    /// function exit block.
    pub fn append_block_params_for_function_returns(&mut self, block: Block) {
        // These parameters count as "user" parameters here because they aren't
        // inserted by the SSABuilder.
        let user_param_count = &mut self.func_ctx.blocks[block].user_param_count;
        for argtyp in &self.func.signature.returns {
            *user_param_count += 1;
            self.func.dfg.append_block_param(block, argtyp.value_type);
        }
    }

    /// Declare that translation of the current function is complete. This
    /// resets the state of the `FunctionBuilder` in preparation to be used
    /// for another function.
    pub fn finalize(&mut self) {
        // Check that all the `Block`s are filled and sealed.
        #[cfg(debug_assertions)]
        {
            for (block, block_data) in self.func_ctx.blocks.iter() {
                assert!(
                    block_data.pristine || self.func_ctx.ssa.is_sealed(block),
                    "FunctionBuilder finalized, but block {} is not sealed",
                    block,
                );
                assert!(
                    block_data.pristine || block_data.filled,
                    "FunctionBuilder finalized, but block {} is not filled",
                    block,
                );
            }
        }

        // In debug mode, check that all blocks are valid basic blocks.
        #[cfg(debug_assertions)]
        {
            // Iterate manually to provide more helpful error messages.
            for block in self.func_ctx.blocks.keys() {
                if let Err((inst, _msg)) = self.func.is_block_basic(block) {
                    let inst_str = self.func.dfg.display_inst(inst);
                    panic!("{} failed basic block invariants on {}", block, inst_str);
                }
            }
        }

        // Clear the state (but preserve the allocated buffers) in preparation
        // for translation another function.
        self.func_ctx.clear();

        // Reset srcloc and position to initial states.
        self.srcloc = Default::default();
        self.position = Default::default();
    }
}

/// All the functions documented in the previous block are write-only and help you build a valid
/// Cranelift IR functions via multiple debug asserts. However, you might need to improve the
/// performance of your translation perform more complex transformations to your Cranelift IR
/// function. The functions below help you inspect the function you're creating and modify it
/// in ways that can be unsafe if used incorrectly.
impl<'a> FunctionBuilder<'a> {
    /// Retrieves all the parameters for a `Block` currently inferred from the jump instructions
    /// inserted that target it and the SSA construction.
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.func.dfg.block_params(block)
    }

    /// Retrieves the signature with reference `sigref` previously added with `import_signature`.
    pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
        self.func.dfg.signatures.get(sigref)
    }

    /// Creates a parameter for a specific `Block` by appending it to the list of already existing
    /// parameters.
    ///
    /// **Note:** this function has to be called at the creation of the `Block` before adding
    /// instructions to it, otherwise this could interfere with SSA construction.
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        debug_assert!(
            self.func_ctx.blocks[block].pristine,
            "You can't add block parameters after adding any instruction"
        );
        debug_assert_eq!(
            self.func_ctx.blocks[block].user_param_count,
            self.func.dfg.num_block_params(block)
        );
        self.func_ctx.blocks[block].user_param_count += 1;
        self.func.dfg.append_block_param(block, ty)
    }

    /// Returns the result values of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.func.dfg.inst_results(inst)
    }

    /// Changes the destination of a jump instruction after creation.
    ///
    /// **Note:** You are responsible for maintaining the coherence with the arguments of
    /// other jump instructions.
    pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Block) {
        let old_dest = self.func.dfg[inst]
            .branch_destination_mut()
            .expect("you want to change the jump destination of a non-jump instruction");
        let pred = self.func_ctx.ssa.remove_block_predecessor(*old_dest, inst);
        *old_dest = new_dest;
        self.func_ctx
            .ssa
            .declare_block_predecessor(new_dest, pred, inst);
    }

    /// Returns `true` if and only if the current `Block` is sealed and has no predecessors declared.
    ///
    /// The entry block of a function is never unreachable.
    pub fn is_unreachable(&self) -> bool {
        let is_entry = match self.func.layout.entry_block() {
            None => false,
            Some(entry) => self.position.unwrap() == entry,
        };
        !is_entry
            && self.func_ctx.ssa.is_sealed(self.position.unwrap())
            && !self
                .func_ctx
                .ssa
                .has_any_predecessors(self.position.unwrap())
    }

    /// Returns `true` if and only if no instructions have been added since the last call to
    /// `switch_to_block`.
    pub fn is_pristine(&self) -> bool {
        self.func_ctx.blocks[self.position.unwrap()].pristine
    }

    /// Returns `true` if and only if a terminator instruction has been inserted since the
    /// last call to `switch_to_block`.
    pub fn is_filled(&self) -> bool {
        self.func_ctx.blocks[self.position.unwrap()].filled
    }
}

/// Helper functions
impl<'a> FunctionBuilder<'a> {
    /// Calls libc.memcpy
    ///
    /// Copies the `size` bytes from `src` to `dest`, assumes that `src + size`
    /// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is
    /// undefined. Applications in which `dest` and `src` might overlap should
    /// use `call_memmove` instead.
    pub fn call_memcpy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memcpy = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memcpy),
            signature,
            colocated: false,
        });

        self.ins().call(libc_memcpy, &[dest, src, size]);
    }

    /// Optimised memcpy or memmove for small copies.
    ///
    /// # Codegen safety
    ///
    /// The following properties must hold to prevent UB:
    ///
    /// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`.
    /// * If `non_overlapping` is true, then this must be correct.
    pub fn emit_small_memory_copy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: u64,
        dest_align: u8,
        src_align: u8,
        non_overlapping: bool,
        mut flags: MemFlags,
    ) {
        // Currently the result of guess work, not actual profiling.
        const THRESHOLD: u64 = 4;

        if size == 0 {
            return;
        }

        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(::core::cmp::min(src_align, dest_align)),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );

        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };

        let load_and_store_amount = size / access_size;

        if load_and_store_amount > THRESHOLD {
            let size_value = self.ins().iconst(config.pointer_type(), size as i64);
            if non_overlapping {
                self.call_memcpy(config, dest, src, size_value);
            } else {
                self.call_memmove(config, dest, src, size_value);
            }
            return;
        }

        flags.set_aligned();

        // Load all of the memory first. This is necessary in case `dest` overlaps.
        // It can also improve performance a bit.
        let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount)
            .map(|i| {
                let offset = (access_size * i) as i32;
                (self.ins().load(int_type, flags, src, offset), offset)
            })
            .collect();

        for (value, offset) in registers {
            self.ins().store(flags, value, dest, offset);
        }
    }

    /// Calls libc.memset
    ///
    /// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`.
    pub fn call_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(types::I32));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memset = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memset),
            signature,
            colocated: false,
        });

        let ch = self.ins().uextend(types::I32, ch);
        self.ins().call(libc_memset, &[buffer, ch, size]);
    }

    /// Calls libc.memset
    ///
    /// Writes `size` bytes of value `ch` to memory starting at `buffer`.
    pub fn emit_small_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: u8,
        size: u64,
        buffer_align: u8,
        mut flags: MemFlags,
    ) {
        // Currently the result of guess work, not actual profiling.
        const THRESHOLD: u64 = 4;

        if size == 0 {
            return;
        }

        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(buffer_align),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );

        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };

        let load_and_store_amount = size / access_size;

        if load_and_store_amount > THRESHOLD {
            let ch = self.ins().iconst(types::I8, i64::from(ch));
            let size = self.ins().iconst(config.pointer_type(), size as i64);
            self.call_memset(config, buffer, ch, size);
        } else {
            flags.set_aligned();

            let ch = u64::from(ch);
            let raw_value = if int_type == types::I64 {
                ch * 0x0101010101010101_u64
            } else if int_type == types::I32 {
                ch * 0x01010101_u64
            } else if int_type == types::I16 {
                (ch << 8) | ch
            } else {
                assert_eq!(int_type, types::I8);
                ch
            };

            let value = self.ins().iconst(int_type, raw_value as i64);
            for i in 0..load_and_store_amount {
                let offset = (access_size * i) as i32;
                self.ins().store(flags, value, buffer, offset);
            }
        }
    }

    /// Calls libc.memmove
    ///
    /// Copies `size` bytes from memory starting at `source` to memory starting
    /// at `dest`. `source` is always read before writing to `dest`.
    pub fn call_memmove(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        source: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };

        let libc_memmove = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memmove),
            signature,
            colocated: false,
        });

        self.ins().call(libc_memmove, &[dest, source, size]);
    }

    /// Calls libc.memcmp
    ///
    /// Compares `size` bytes from memory starting at `left` to memory starting
    /// at `right`. Returns `0` if all `n` bytes are equal.  If the first difference
    /// is at offset `i`, returns a positive integer if `ugt(left[i], right[i])`
    /// and a negative integer if `ult(left[i], right[i])`.
    ///
    /// Returns a C `int`, which is currently always [`types::I32`].
    pub fn call_memcmp(
        &mut self,
        config: TargetFrontendConfig,
        left: Value,
        right: Value,
        size: Value,
    ) -> Value {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.reserve(3);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.returns.push(AbiParam::new(types::I32));
            self.import_signature(s)
        };

        let libc_memcmp = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memcmp),
            signature,
            colocated: false,
        });

        let call = self.ins().call(libc_memcmp, &[left, right, size]);
        self.func.dfg.first_result(call)
    }

    /// Optimised [`Self::call_memcmp`] for small copies.
    ///
    /// This implements the byte slice comparison `int_cc(left[..size], right[..size])`.
    ///
    /// `left_align` and `right_align` are the statically-known alignments of the
    /// `left` and `right` pointers respectively.  These are used to know whether
    /// to mark `load`s as aligned.  It's always fine to pass `1` for these, but
    /// passing something higher than the true alignment may trap or otherwise
    /// misbehave as described in [`MemFlags::aligned`].
    ///
    /// Note that `memcmp` is a *big-endian* and *unsigned* comparison.
    /// As such, this panics when called with `IntCC::Signed*` or `IntCC::*Overflow`.
    pub fn emit_small_memory_compare(
        &mut self,
        config: TargetFrontendConfig,
        int_cc: IntCC,
        left: Value,
        right: Value,
        size: u64,
        left_align: std::num::NonZeroU8,
        right_align: std::num::NonZeroU8,
        flags: MemFlags,
    ) -> Value {
        use IntCC::*;
        let (zero_cc, empty_imm) = match int_cc {
            //
            Equal => (Equal, true),
            NotEqual => (NotEqual, false),

            UnsignedLessThan => (SignedLessThan, false),
            UnsignedGreaterThanOrEqual => (SignedGreaterThanOrEqual, true),
            UnsignedGreaterThan => (SignedGreaterThan, false),
            UnsignedLessThanOrEqual => (SignedLessThanOrEqual, true),

            SignedLessThan
            | SignedGreaterThanOrEqual
            | SignedGreaterThan
            | SignedLessThanOrEqual => {
                panic!("Signed comparison {} not supported by memcmp", int_cc)
            }
            Overflow | NotOverflow => {
                panic!("Overflow comparison {} not supported by memcmp", int_cc)
            }
        };

        if size == 0 {
            return self.ins().bconst(types::B1, empty_imm);
        }

        // Future work could consider expanding this to handle more-complex scenarios.
        if let Some(small_type) = size.try_into().ok().and_then(Type::int_with_byte_size) {
            if let Equal | NotEqual = zero_cc {
                let mut left_flags = flags;
                if size == left_align.get().into() {
                    left_flags.set_aligned();
                }
                let mut right_flags = flags;
                if size == right_align.get().into() {
                    right_flags.set_aligned();
                }
                let left_val = self.ins().load(small_type, left_flags, left, 0);
                let right_val = self.ins().load(small_type, right_flags, right, 0);
                return self.ins().icmp(int_cc, left_val, right_val);
            } else if small_type == types::I8 {
                // Once the big-endian loads from wasmtime#2492 are implemented in
                // the backends, we could easily handle comparisons for more sizes here.
                // But for now, just handle single bytes where we don't need to worry.

                let mut aligned_flags = flags;
                aligned_flags.set_aligned();
                let left_val = self.ins().load(small_type, aligned_flags, left, 0);
                let right_val = self.ins().load(small_type, aligned_flags, right, 0);
                return self.ins().icmp(int_cc, left_val, right_val);
            }
        }

        let pointer_type = config.pointer_type();
        let size = self.ins().iconst(pointer_type, size as i64);
        let cmp = self.call_memcmp(config, left, right, size);
        self.ins().icmp_imm(zero_cc, cmp, 0)
    }
}

fn greatest_divisible_power_of_two(size: u64) -> u64 {
    (size as i64 & -(size as i64)) as u64
}

// Helper functions
impl<'a> FunctionBuilder<'a> {
    /// A Block is 'filled' when a terminator instruction is present.
    fn fill_current_block(&mut self) {
        self.func_ctx.blocks[self.position.unwrap()].filled = true;
    }

    fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) {
        self.func_ctx
            .ssa
            .declare_block_predecessor(dest_block, self.position.unwrap(), jump_inst);
    }

    fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
        for split_block in side_effects.split_blocks_created {
            self.func_ctx.blocks[split_block].filled = true
        }
        for modified_block in side_effects.instructions_added_to_blocks {
            self.func_ctx.blocks[modified_block].pristine = false
        }
    }
}

#[cfg(test)]
mod tests {
    use super::greatest_divisible_power_of_two;
    use crate::frontend::{FunctionBuilder, FunctionBuilderContext};
    use crate::Variable;
    use alloc::string::ToString;
    use cranelift_codegen::entity::EntityRef;
    use cranelift_codegen::ir::condcodes::IntCC;
    use cranelift_codegen::ir::types::*;
    use cranelift_codegen::ir::{
        AbiParam, ExternalName, Function, InstBuilder, MemFlags, Signature, Value,
    };
    use cranelift_codegen::isa::{CallConv, TargetFrontendConfig, TargetIsa};
    use cranelift_codegen::settings;
    use cranelift_codegen::verifier::verify_function;
    use target_lexicon::PointerWidth;

    fn sample_function(lazy_seal: bool) {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I32));
        sig.params.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let block1 = builder.create_block();
            let block2 = builder.create_block();
            let block3 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, I32);
            builder.declare_var(y, I32);
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);

            builder.switch_to_block(block0);
            if !lazy_seal {
                builder.seal_block(block0);
            }
            {
                let tmp = builder.block_params(block0)[0]; // the first function parameter
                builder.def_var(x, tmp);
            }
            {
                let tmp = builder.ins().iconst(I32, 2);
                builder.def_var(y, tmp);
            }
            {
                let arg1 = builder.use_var(x);
                let arg2 = builder.use_var(y);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            builder.ins().jump(block1, &[]);

            builder.switch_to_block(block1);
            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(z);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().brnz(arg, block3, &[]);
            }
            builder.ins().jump(block2, &[]);

            builder.switch_to_block(block2);
            if !lazy_seal {
                builder.seal_block(block2);
            }
            {
                let arg1 = builder.use_var(z);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().return_(&[arg]);
            }

            builder.switch_to_block(block3);
            if !lazy_seal {
                builder.seal_block(block3);
            }

            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(y, tmp);
            }
            builder.ins().jump(block1, &[]);
            if !lazy_seal {
                builder.seal_block(block1);
            }

            if lazy_seal {
                builder.seal_all_blocks();
            }

            builder.finalize();
        }

        let flags = settings::Flags::new(settings::builder());
        // println!("{}", func.display(None));
        if let Err(errors) = verify_function(&func, &flags) {
            panic!("{}\n{}", func.display(), errors)
        }
    }

    #[test]
    fn sample() {
        sample_function(false)
    }

    #[test]
    fn sample_with_lazy_seal() {
        sample_function(true)
    }

    /// Helper function to construct a fixed frontend configuration.
    fn systemv_frontend_config() -> TargetFrontendConfig {
        TargetFrontendConfig {
            default_call_conv: CallConv::SystemV,
            pointer_width: PointerWidth::U64,
        }
    }

    #[test]
    fn memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = builder.use_var(y);
            builder.call_memcpy(frontend_config, dest, src, size);
            builder.ins().return_(&[size]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) system_v
    fn0 = %Memcpy sig0

block0:
    v3 = iconst.i64 0
    v1 -> v3
    v2 = iconst.i64 0
    v0 -> v2
    call fn0(v1, v0, v1)
    return v1
}
"
        );
    }

    #[test]
    fn small_memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memory_copy(
                frontend_config,
                dest,
                src,
                size,
                8,
                8,
                true,
                MemFlags::new(),
            );
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = load.i64 aligned v0
    store aligned v2, v1
    return v1
}
"
        );
    }

    #[test]
    fn not_so_small_memcpy() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, frontend_config.pointer_type());
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memory_copy(
                frontend_config,
                dest,
                src,
                size,
                8,
                8,
                true,
                MemFlags::new(),
            );
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) system_v
    fn0 = %Memcpy sig0

block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = iconst.i64 8192
    call fn0(v1, v0, v2)
    return v1
}
"
        );
    }

    #[test]
    fn small_memset() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
block0:
    v2 = iconst.i64 0
    v0 -> v2
    v1 = iconst.i64 0x0101_0101_0101_0101
    store aligned v1, v0
    return v0
}
"
        );
    }

    #[test]
    fn not_so_small_memset() {
        let frontend_config = systemv_frontend_config();
        let mut sig = Signature::new(frontend_config.default_call_conv);
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, frontend_config.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memset(frontend_config, dest, 1, size, 8, MemFlags::new());
            builder.ins().return_(&[dest]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i64, i32, i64) system_v
    fn0 = %Memset sig0

block0:
    v4 = iconst.i64 0
    v0 -> v4
    v1 = iconst.i8 1
    v2 = iconst.i64 8192
    v3 = uextend.i32 v1
    call fn0(v0, v3, v2)
    return v0
}
"
        );
    }

    #[test]
    fn memcmp() {
        use core::str::FromStr;
        use cranelift_codegen::isa;

        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);

        let triple =
            ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");

        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires x86_64 support.")
            .expect("Should be able to create backend with default flags");

        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.declare_var(z, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let left = builder.use_var(x);
            let right = builder.use_var(y);
            let size = builder.use_var(z);
            let cmp = builder.call_memcmp(target.frontend_config(), left, right, size);
            builder.ins().return_(&[cmp]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i64, i64, i64) -> i32 system_v
    fn0 = %Memcmp sig0

block0:
    v6 = iconst.i64 0
    v2 -> v6
    v5 = iconst.i64 0
    v1 -> v5
    v4 = iconst.i64 0
    v0 -> v4
    v3 = call fn0(v0, v1, v2)
    return v3
}
"
        );
    }

    #[test]
    fn small_memcmp_zero_size() {
        let align_eight = std::num::NonZeroU8::new(8).unwrap();
        small_memcmp_helper(
            "
block0:
    v4 = iconst.i64 0
    v1 -> v4
    v3 = iconst.i64 0
    v0 -> v3
    v2 = bconst.b1 true
    return v2",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThanOrEqual,
                    x,
                    y,
                    0,
                    align_eight,
                    align_eight,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_byte_ugt() {
        let align_one = std::num::NonZeroU8::new(1).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i8 aligned v0
    v3 = load.i8 aligned v1
    v4 = icmp ugt v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThan,
                    x,
                    y,
                    1,
                    align_one,
                    align_one,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_aligned_eq() {
        let align_four = std::num::NonZeroU8::new(4).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i32 aligned v0
    v3 = load.i32 aligned v1
    v4 = icmp eq v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::Equal,
                    x,
                    y,
                    4,
                    align_four,
                    align_four,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_ipv6_ne() {
        let align_two = std::num::NonZeroU8::new(2).unwrap();
        small_memcmp_helper(
            "
block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = load.i128 v0
    v3 = load.i128 v1
    v4 = icmp ne v2, v3
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::NotEqual,
                    x,
                    y,
                    16,
                    align_two,
                    align_two,
                    MemFlags::new(),
                )
            },
        );
    }

    #[test]
    fn small_memcmp_odd_size_uge() {
        let one = std::num::NonZeroU8::new(1).unwrap();
        small_memcmp_helper(
            "
    sig0 = (i64, i64, i64) -> i32 system_v
    fn0 = %Memcmp sig0

block0:
    v6 = iconst.i64 0
    v1 -> v6
    v5 = iconst.i64 0
    v0 -> v5
    v2 = iconst.i64 3
    v3 = call fn0(v0, v1, v2)
    v4 = icmp_imm sge v3, 0
    return v4",
            |builder, target, x, y| {
                builder.emit_small_memory_compare(
                    target.frontend_config(),
                    IntCC::UnsignedGreaterThanOrEqual,
                    x,
                    y,
                    3,
                    one,
                    one,
                    MemFlags::new(),
                )
            },
        );
    }

    fn small_memcmp_helper(
        expected: &str,
        f: impl FnOnce(&mut FunctionBuilder, &dyn TargetIsa, Value, Value) -> Value,
    ) {
        use core::str::FromStr;
        use cranelift_codegen::isa;

        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);

        let triple =
            ::target_lexicon::Triple::from_str("x86_64").expect("Couldn't create x86_64 triple");

        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires x86_64 support.")
            .expect("Should be able to create backend with default flags");

        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(B1));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);

            let left = builder.use_var(x);
            let right = builder.use_var(y);
            let ret = f(&mut builder, &*target, left, right);
            builder.ins().return_(&[ret]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        let actual_ir = func.display().to_string();
        let expected_ir = format!("function %sample() -> b1 system_v {{{}\n}}\n", expected);
        assert!(
            expected_ir == actual_ir,
            "Expected\n{}, but got\n{}",
            expected_ir,
            actual_ir
        );
    }

    #[test]
    fn undef_vector_vars() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I8X16));
        sig.returns.push(AbiParam::new(B8X16));
        sig.returns.push(AbiParam::new(F32X4));

        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);

            let block0 = builder.create_block();
            let a = Variable::new(0);
            let b = Variable::new(1);
            let c = Variable::new(2);
            builder.declare_var(a, I8X16);
            builder.declare_var(b, B8X16);
            builder.declare_var(c, F32X4);
            builder.switch_to_block(block0);

            let a = builder.use_var(a);
            let b = builder.use_var(b);
            let c = builder.use_var(c);
            builder.ins().return_(&[a, b, c]);

            builder.seal_all_blocks();
            builder.finalize();
        }

        assert_eq!(
            func.display().to_string(),
            "function %sample() -> i8x16, b8x16, f32x4 system_v {
    const0 = 0x00000000000000000000000000000000

block0:
    v5 = f32const 0.0
    v6 = splat.f32x4 v5
    v2 -> v6
    v4 = vconst.b8x16 const0
    v1 -> v4
    v3 = vconst.i8x16 const0
    v0 -> v3
    return v0, v1, v2
}
"
        );
    }

    #[test]
    fn test_greatest_divisible_power_of_two() {
        assert_eq!(64, greatest_divisible_power_of_two(64));
        assert_eq!(16, greatest_divisible_power_of_two(48));
        assert_eq!(8, greatest_divisible_power_of_two(24));
        assert_eq!(1, greatest_divisible_power_of_two(25));
    }
}