1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
//! Public key recovery support.

use crate::{Error, Result};

/// Recovery IDs, a.k.a. "recid".
///
/// This is an integer value `0`, `1`, `2`, or `3` included along with a
/// signature which is used during the recovery process to select the correct
/// public key from the signature.
///
/// It consists of two bits of information:
///
/// - low bit (0/1): was the y-coordinate of the affine point resulting from
///   the fixed-base multiplication 𝑘×𝑮 odd? This part of the algorithm
///   functions similar to point decompression.
/// - hi bit (3/4): did the affine x-coordinate of 𝑘×𝑮 overflow the order of
///   the scalar field, requiring a reduction when computing `r`?
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct RecoveryId(u8);

impl RecoveryId {
    /// Maximum supported value for the recovery ID (inclusive).
    pub const MAX: u8 = 3;

    /// Create a new [`RecoveryId`] from the following 1-bit arguments:
    ///
    /// - `is_y_odd`: is the affine y-coordinate of 𝑘×𝑮 odd?
    /// - `is_x_reduced`: did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
    pub fn new(is_y_odd: bool, is_x_reduced: bool) -> Self {
        Self((is_x_reduced as u8) << 1 | (is_y_odd as u8))
    }

    /// Did the affine x-coordinate of 𝑘×𝑮 overflow the curve order?
    pub fn is_x_reduced(self) -> bool {
        (self.0 & 0b10) != 0
    }

    /// Is the affine y-coordinate of 𝑘×𝑮 odd?
    pub fn is_y_odd(self) -> bool {
        (self.0 & 1) != 0
    }

    /// Convert this [`RecoveryId`] into a `u8`.
    pub fn to_byte(self) -> u8 {
        self.into()
    }
}

impl TryFrom<u8> for RecoveryId {
    type Error = Error;

    fn try_from(byte: u8) -> Result<Self> {
        if byte <= Self::MAX {
            Ok(Self(byte))
        } else {
            Err(Error::new())
        }
    }
}

impl From<RecoveryId> for u8 {
    fn from(id: RecoveryId) -> u8 {
        id.0
    }
}

#[cfg(test)]
mod tests {
    use super::RecoveryId;

    #[test]
    fn new() {
        assert_eq!(RecoveryId::new(false, false).to_byte(), 0);
        assert_eq!(RecoveryId::new(true, false).to_byte(), 1);
        assert_eq!(RecoveryId::new(false, true).to_byte(), 2);
        assert_eq!(RecoveryId::new(true, true).to_byte(), 3);
    }

    #[test]
    fn try_from() {
        for n in 0u8..=3 {
            assert_eq!(RecoveryId::try_from(n).unwrap().to_byte(), n);
        }

        for n in 4u8..=255 {
            assert!(RecoveryId::try_from(n).is_err());
        }
    }

    #[test]
    fn is_x_reduced() {
        assert_eq!(RecoveryId::try_from(0).unwrap().is_x_reduced(), false);
        assert_eq!(RecoveryId::try_from(1).unwrap().is_x_reduced(), false);
        assert_eq!(RecoveryId::try_from(2).unwrap().is_x_reduced(), true);
        assert_eq!(RecoveryId::try_from(3).unwrap().is_x_reduced(), true);
    }

    #[test]
    fn is_y_odd() {
        assert_eq!(RecoveryId::try_from(0).unwrap().is_y_odd(), false);
        assert_eq!(RecoveryId::try_from(1).unwrap().is_y_odd(), true);
        assert_eq!(RecoveryId::try_from(2).unwrap().is_y_odd(), false);
        assert_eq!(RecoveryId::try_from(3).unwrap().is_y_odd(), true);
    }
}