1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! Object file builder.
//!
//! Creates ELF image based on `Compilation` information. The ELF contains
//! functions and trampolines in the ".text" section. It also contains all
//! relocation records for the linking stage. If DWARF sections exist, their
//! content will be written as well.
//!
//! The object file has symbols for each function and trampoline, as well as
//! symbols that refer to libcalls.
//!
//! The function symbol names have format "_wasm_function_N", where N is
//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
//! function body, the imported wasm function do not. The trampolines symbol
//! names have format "_trampoline_N", where N is `SignatureIndex`.

use crate::{CompiledFunction, RelocationTarget};
use anyhow::Result;
use cranelift_codegen::isa::{
    unwind::{systemv, UnwindInfo},
    TargetIsa,
};
use cranelift_codegen::TextSectionBuilder;
use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
use gimli::RunTimeEndian;
use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
use object::{Architecture, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
use std::convert::TryFrom;
use std::ops::Range;
use wasmtime_environ::obj;
use wasmtime_environ::{DefinedFuncIndex, Module, PrimaryMap, SignatureIndex, Trampoline};

const TEXT_SECTION_NAME: &[u8] = b".text";

/// A helper structure used to assemble the final text section of an exectuable,
/// plus unwinding information and other related details.
///
/// This builder relies on Cranelift-specific internals but assembles into a
/// generic `Object` which will get further appended to in a compiler-agnostic
/// fashion later.
pub struct ModuleTextBuilder<'a> {
    /// The target that we're compiling for, used to query target-specific
    /// information as necessary.
    isa: &'a dyn TargetIsa,

    /// The object file that we're generating code into.
    obj: &'a mut Object<'static>,

    /// The WebAssembly module we're generating code for.
    module: &'a Module,

    text_section: SectionId,

    unwind_info: UnwindInfoBuilder<'a>,

    /// The corresponding symbol for each function, inserted as they're defined.
    ///
    /// If an index isn't here yet then it hasn't been defined yet.
    func_symbols: PrimaryMap<DefinedFuncIndex, SymbolId>,

    /// In-progress text section that we're using cranelift's `MachBuffer` to
    /// build to resolve relocations (calls) between functions.
    text: Box<dyn TextSectionBuilder>,
}

impl<'a> ModuleTextBuilder<'a> {
    pub fn new(obj: &'a mut Object<'static>, module: &'a Module, isa: &'a dyn TargetIsa) -> Self {
        // Entire code (functions and trampolines) will be placed
        // in the ".text" section.
        let text_section = obj.add_section(
            obj.segment_name(StandardSegment::Text).to_vec(),
            TEXT_SECTION_NAME.to_vec(),
            SectionKind::Text,
        );

        let num_defined = module.functions.len() - module.num_imported_funcs;
        Self {
            isa,
            obj,
            module,
            text_section,
            func_symbols: PrimaryMap::with_capacity(num_defined),
            unwind_info: Default::default(),
            text: isa.text_section_builder(num_defined as u32),
        }
    }

    /// Appends the `func` specified named `name` to this object.
    ///
    /// Returns the symbol associated with the function as well as the range
    /// that the function resides within the text section.
    pub fn append_func(
        &mut self,
        labeled: bool,
        name: Vec<u8>,
        func: &'a CompiledFunction,
    ) -> (SymbolId, Range<u64>) {
        let body_len = func.body.len() as u64;
        let off = self.text.append(labeled, &func.body, None);

        let symbol_id = self.obj.add_symbol(Symbol {
            name,
            value: off,
            size: body_len,
            kind: SymbolKind::Text,
            scope: SymbolScope::Compilation,
            weak: false,
            section: SymbolSection::Section(self.text_section),
            flags: SymbolFlags::None,
        });

        if let Some(info) = &func.unwind_info {
            self.unwind_info.push(off, body_len, info, |data, align| {
                self.text.append(false, data, Some(align))
            });
        }

        for r in func.relocations.iter() {
            match r.reloc_target {
                // Relocations against user-defined functions means that this is
                // a relocation against a module-local function, typically a
                // call between functions. The `text` field is given priority to
                // resolve this relocation before we actually emit an object
                // file, but if it can't handle it then we pass through the
                // relocation.
                RelocationTarget::UserFunc(index) => {
                    let defined_index = self.module.defined_func_index(index).unwrap();
                    if self.text.resolve_reloc(
                        off + u64::from(r.offset),
                        r.reloc,
                        r.addend,
                        defined_index.as_u32(),
                    ) {
                        continue;
                    }

                    // At this time it's expected that all relocations are
                    // handled by `text.resolve_reloc`, and anything that isn't
                    // handled is a bug in `text.resolve_reloc` or something
                    // transitively there. If truly necessary, though, then this
                    // loop could also be updated to forward the relocation to
                    // the final object file as well.
                    panic!(
                        "unresolved relocation could not be procesed against \
                         {index:?}: {r:?}"
                    );
                }

                // At this time it's not expected that any libcall relocations
                // are generated. Ideally we don't want relocations against
                // libcalls anyway as libcalls should go through indirect
                // `VMContext` tables to avoid needing to apply relocations at
                // module-load time as well.
                RelocationTarget::LibCall(call) => {
                    unimplemented!("cannot generate relocation against libcall {call:?}");
                }
            };
        }
        (symbol_id, off..off + body_len)
    }

    /// Appends a function to this object file.
    ///
    /// This is expected to be called in-order for ascending `index` values.
    pub fn func(&mut self, index: DefinedFuncIndex, func: &'a CompiledFunction) -> Range<u64> {
        let name = obj::func_symbol_name(self.module.func_index(index));
        let (symbol_id, range) = self.append_func(true, name.into_bytes(), func);
        assert_eq!(self.func_symbols.push(symbol_id), index);
        range
    }

    pub fn trampoline(&mut self, sig: SignatureIndex, func: &'a CompiledFunction) -> Trampoline {
        let name = obj::trampoline_symbol_name(sig);
        let (_, range) = self.append_func(false, name.into_bytes(), func);
        Trampoline {
            signature: sig,
            start: range.start,
            length: u32::try_from(range.end - range.start).unwrap(),
        }
    }

    /// Forces "veneers" to be used for inter-function calls in the text
    /// section which means that in-bounds optimized addresses are never used.
    ///
    /// This is only useful for debugging cranelift itself and typically this
    /// option is disabled.
    pub fn force_veneers(&mut self) {
        self.text.force_veneers();
    }

    /// Appends the specified amount of bytes of padding into the text section.
    ///
    /// This is only useful when fuzzing and/or debugging cranelift itself and
    /// for production scenarios `padding` is 0 and this function does nothing.
    pub fn append_padding(&mut self, padding: usize) {
        if padding == 0 {
            return;
        }
        self.text.append(false, &vec![0; padding], Some(1));
    }

    /// Indicates that the text section has been written completely and this
    /// will finish appending it to the original object.
    ///
    /// Note that this will also write out the unwind information sections if
    /// necessary.
    pub fn finish(mut self) -> Result<PrimaryMap<DefinedFuncIndex, SymbolId>> {
        // Finish up the text section now that we're done adding functions.
        let text = self.text.finish();
        self.obj
            .section_mut(self.text_section)
            .set_data(text, self.isa.code_section_alignment());

        // Append the unwind information for all our functions, if necessary.
        self.unwind_info
            .append_section(self.isa, self.obj, self.text_section);

        Ok(self.func_symbols)
    }
}

/// Builder used to create unwind information for a set of functions added to a
/// text section.
#[derive(Default)]
struct UnwindInfoBuilder<'a> {
    windows_unwind_info: Vec<RUNTIME_FUNCTION>,
    systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
}

// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
// to ensure everything is always `u32` and to have it available on all
// platforms. Note that all of these specifiers here are relative to a "base
// address" which we define as the base of where the text section is eventually
// loaded.
#[allow(non_camel_case_types)]
struct RUNTIME_FUNCTION {
    begin: u32,
    end: u32,
    unwind_address: u32,
}

impl<'a> UnwindInfoBuilder<'a> {
    /// Pushes the unwind information for a function into this builder.
    ///
    /// The function being described must be located at `function_offset` within
    /// the text section itself, and the function's size is specified by
    /// `function_len`.
    ///
    /// The `info` should come from Cranelift itself and this function may
    /// append more data to the text section in which case the `append_data`
    /// callback will be invoked. The `append_data` callback receives the data
    /// to append to the text section as well as the alignment it needs to be
    /// written at. The return value of `append_data` should be the offset
    /// within the text section for where the data was written.
    fn push(
        &mut self,
        function_offset: u64,
        function_len: u64,
        info: &'a UnwindInfo,
        append_data: impl FnOnce(&[u8], u32) -> u64,
    ) {
        match info {
            // Windows unwind information is preferred to come after the code
            // itself. The information is appended here just after the function,
            // aligned to 4-bytes as required by Windows.
            //
            // The location of the unwind info, and the function it describes,
            // is then recorded in an unwind info table to get embedded into the
            // object at the end of compilation.
            UnwindInfo::WindowsX64(info) => {
                // Windows prefers Unwind info after the code -- writing it here.
                let unwind_size = info.emit_size();
                let mut unwind_info = vec![0; unwind_size];
                info.emit(&mut unwind_info);
                let unwind_off = append_data(&unwind_info, 4);
                self.windows_unwind_info.push(RUNTIME_FUNCTION {
                    begin: u32::try_from(function_offset).unwrap(),
                    end: u32::try_from(function_offset + function_len).unwrap(),
                    unwind_address: u32::try_from(unwind_off).unwrap(),
                });
            }

            // System-V is different enough that we just record the unwinding
            // information to get processed at a later time.
            UnwindInfo::SystemV(info) => {
                self.systemv_unwind_info.push((function_offset, info));
            }

            _ => panic!("some unwind info isn't handled here"),
        }
    }

    /// Appends the unwind information section, if any, to the `obj` specified.
    ///
    /// This function must be called immediately after the text section was
    /// added to a builder. The unwind information section must trail the text
    /// section immediately.
    ///
    /// The `text_section`'s section identifier is passed into this function.
    fn append_section(&self, isa: &dyn TargetIsa, obj: &mut Object<'_>, text_section: SectionId) {
        // This write will align the text section to a page boundary and then
        // return the offset at that point. This gives us the full size of the
        // text section at that point, after alignment.
        let text_section_size =
            obj.append_section_data(text_section, &[], isa.code_section_alignment());

        if self.windows_unwind_info.len() > 0 {
            assert!(self.systemv_unwind_info.len() == 0);
            let segment = obj.segment_name(StandardSegment::Data).to_vec();
            let section_id = obj.add_section(
                segment,
                b"_wasmtime_winx64_unwind".to_vec(),
                SectionKind::ReadOnlyData,
            );
            self.write_windows_unwind_info(obj, section_id);
        }

        if self.systemv_unwind_info.len() > 0 {
            let segment = obj.segment_name(StandardSegment::Data).to_vec();
            let section_id =
                obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
            self.write_systemv_unwind_info(isa, obj, section_id, text_section_size)
        }
    }

    /// This function appends a nonstandard section to the object which is only
    /// used during `CodeMemory::publish`.
    ///
    /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
    /// the object file itself. This way registration of unwind info can simply
    /// pass this slice to the OS itself and there's no need to recalculate
    /// anything on the other end of loading a module from a precompiled object.
    ///
    /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
    fn write_windows_unwind_info(&self, obj: &mut Object<'_>, section_id: SectionId) {
        // Currently the binary format supported here only supports
        // little-endian for x86_64, or at least that's all where it's tested.
        // This may need updates for other platforms.
        assert_eq!(obj.architecture(), Architecture::X86_64);

        let mut unwind_info = Vec::with_capacity(self.windows_unwind_info.len() * 3 * 4);
        for info in self.windows_unwind_info.iter() {
            unwind_info.extend_from_slice(&info.begin.to_le_bytes());
            unwind_info.extend_from_slice(&info.end.to_le_bytes());
            unwind_info.extend_from_slice(&info.unwind_address.to_le_bytes());
        }
        obj.append_section_data(section_id, &unwind_info, 4);
    }

    /// This function appends a nonstandard section to the object which is only
    /// used during `CodeMemory::publish`.
    ///
    /// This will generate a `.eh_frame` section, but not one that can be
    /// naively loaded. The goal of this section is that we can create the
    /// section once here and never again does it need to change. To describe
    /// dynamically loaded functions though each individual FDE needs to talk
    /// about the function's absolute address that it's referencing. Naturally
    /// we don't actually know the function's absolute address when we're
    /// creating an object here.
    ///
    /// To solve this problem the FDE address encoding mode is set to
    /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
    /// FDE describes is a relative to the address of the FDE itself. By
    /// leveraging this relative-ness we can assume that the relative distance
    /// between the FDE and the function it describes is constant, which should
    /// allow us to generate an FDE ahead-of-time here.
    ///
    /// For now this assumes that all the code of functions will start at a
    /// page-aligned address when loaded into memory. The eh_frame encoded here
    /// then assumes that the text section is itself page aligned to its size
    /// and the eh_frame will follow just after the text section. This means
    /// that the relative offsets we're using here is the FDE going backwards
    /// into the text section itself.
    ///
    /// Note that the library we're using to create the FDEs, `gimli`, doesn't
    /// actually encode addresses relative to the FDE itself. Instead the
    /// addresses are encoded relative to the start of the `.eh_frame` section.
    /// This makes it much easier for us where we provide the relative offset
    /// from the start of `.eh_frame` to the function in the text section, which
    /// given our layout basically means the offset of the function in the text
    /// section from the end of the text section.
    ///
    /// A final note is that the reason we page-align the text section's size is
    /// so the .eh_frame lives on a separate page from the text section itself.
    /// This allows `.eh_frame` to have different virtual memory permissions,
    /// such as being purely read-only instead of read/execute like the code
    /// bits.
    fn write_systemv_unwind_info(
        &self,
        isa: &dyn TargetIsa,
        obj: &mut Object<'_>,
        section_id: SectionId,
        text_section_size: u64,
    ) {
        let mut cie = isa
            .create_systemv_cie()
            .expect("must be able to create a CIE for system-v unwind info");
        let mut table = FrameTable::default();
        cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
        let cie_id = table.add_cie(cie);

        for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
            let backwards_off = text_section_size - text_section_off;
            let actual_offset = -i64::try_from(backwards_off).unwrap();
            // Note that gimli wants an unsigned 64-bit integer here, but
            // unwinders just use this constant for a relative addition with the
            // address of the FDE, which means that the sign doesn't actually
            // matter.
            let fde = unwind_info.to_fde(Address::Constant(actual_offset as u64));
            table.add_fde(cie_id, fde);
        }
        let endian = match isa.triple().endianness().unwrap() {
            target_lexicon::Endianness::Little => RunTimeEndian::Little,
            target_lexicon::Endianness::Big => RunTimeEndian::Big,
        };
        let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
        table.write_eh_frame(&mut eh_frame).unwrap();

        // Some unwinding implementations expect a terminating "empty" length so
        // a 0 is written at the end of the table for those implementations.
        let mut endian_vec = (eh_frame.0).0;
        endian_vec.write_u32(0).unwrap();
        obj.append_section_data(section_id, endian_vec.slice(), 1);

        use gimli::constants;
        use gimli::write::Error;

        struct MyVec(EndianVec<RunTimeEndian>);

        impl Writer for MyVec {
            type Endian = RunTimeEndian;

            fn endian(&self) -> RunTimeEndian {
                self.0.endian()
            }

            fn len(&self) -> usize {
                self.0.len()
            }

            fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
                self.0.write(buf)
            }

            fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
                self.0.write_at(pos, buf)
            }

            // FIXME(gimli-rs/gimli#576) this is the definition we want for
            // `write_eh_pointer` but the default implementation, at the time
            // of this writing, uses `offset - val` instead of `val - offset`.
            // A PR has been merged to fix this but until that's published we
            // can't use it.
            fn write_eh_pointer(
                &mut self,
                address: Address,
                eh_pe: constants::DwEhPe,
                size: u8,
            ) -> Result<(), Error> {
                let val = match address {
                    Address::Constant(val) => val,
                    Address::Symbol { .. } => unreachable!(),
                };
                assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
                let offset = self.len() as u64;
                let val = val.wrapping_sub(offset);
                self.write_eh_pointer_data(val, eh_pe.format(), size)
            }
        }
    }
}