1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! Low-level ECDSA primitives.
//!
//! # ⚠️ Warning: Hazmat!
//!
//! YOU PROBABLY DON'T WANT TO USE THESE!
//!
//! These primitives are easy-to-misuse low-level interfaces.
//!
//! If you are an end user / non-expert in cryptography, do not use these!
//! Failure to use them correctly can lead to catastrophic failures including
//! FULL PRIVATE KEY RECOVERY!

#[cfg(feature = "arithmetic")]
use {
    crate::{Error, RecoveryId, Result, SignatureSize},
    core::borrow::Borrow,
    elliptic_curve::{
        group::Curve as _,
        ops::{Invert, LinearCombination, Reduce},
        AffineArithmetic, AffineXCoordinate, Field, FieldBytes, Group, ProjectiveArithmetic,
        ProjectivePoint, Scalar, ScalarArithmetic,
    },
};

#[cfg(feature = "digest")]
use {
    elliptic_curve::FieldSize,
    signature::{digest::Digest, PrehashSignature},
};

#[cfg(any(feature = "arithmetic", feature = "digest"))]
use crate::{
    elliptic_curve::{generic_array::ArrayLength, PrimeCurve},
    Signature,
};

#[cfg(all(feature = "sign"))]
use {
    elliptic_curve::{ff::PrimeField, zeroize::Zeroizing, NonZeroScalar, ScalarCore},
    signature::digest::{BlockInput, FixedOutput, Reset, Update},
};

/// Try to sign the given prehashed message using ECDSA.
///
/// This trait is intended to be implemented on a type with access to the
/// secret scalar via `&self`, such as particular curve's `Scalar` type.
#[cfg(feature = "arithmetic")]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub trait SignPrimitive<C>: Field + Into<FieldBytes<C>> + Reduce<C::UInt> + Sized
where
    C: PrimeCurve + ProjectiveArithmetic + ScalarArithmetic<Scalar = Self>,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Try to sign the prehashed message.
    ///
    /// Accepts the following arguments:
    ///
    /// - `k`: ephemeral scalar value. MUST BE UNIFORMLY RANDOM!!!
    /// - `z`: scalar computed from a hashed message digest to be signed.
    ///   MUST BE OUTPUT OF A CRYPTOGRAPHICALLY SECURE DIGEST ALGORITHM!!!
    ///
    /// # Computing the `hashed_msg` scalar
    ///
    /// To compute a [`Scalar`] from a message digest, use the [`Reduce`] trait
    /// on the computed digest, e.g. `Scalar::from_be_bytes_reduced`.
    ///
    /// # Returns
    ///
    /// ECDSA [`Signature`] and, when possible/desired, a [`RecoveryId`]
    /// which can be used to recover the verifying key for a given signature.
    #[allow(non_snake_case)]
    fn try_sign_prehashed<K>(
        &self,
        k: K,
        z: Scalar<C>,
    ) -> Result<(Signature<C>, Option<RecoveryId>)>
    where
        K: Borrow<Self> + Invert<Output = Self>,
    {
        if k.borrow().is_zero().into() {
            return Err(Error::new());
        }

        // Compute scalar inversion of 𝑘
        let k_inv = Option::<Scalar<C>>::from(k.invert()).ok_or_else(Error::new)?;

        // Compute 𝐑 = 𝑘×𝑮
        let R = (C::ProjectivePoint::generator() * k.borrow()).to_affine();

        // Lift x-coordinate of 𝐑 (element of base field) into a serialized big
        // integer, then reduce it into an element of the scalar field
        let r = Self::from_be_bytes_reduced(R.x());

        // Compute `s` as a signature over `r` and `z`.
        let s = k_inv * (z + (r * self));

        if s.is_zero().into() {
            return Err(Error::new());
        }

        // TODO(tarcieri): support for computing recovery ID
        Ok((Signature::from_scalars(r, s)?, None))
    }
}

/// Verify the given prehashed message using ECDSA.
///
/// This trait is intended to be implemented on type which can access
/// the affine point represeting the public key via `&self`, such as a
/// particular curve's `AffinePoint` type.
#[cfg(feature = "arithmetic")]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub trait VerifyPrimitive<C>: AffineXCoordinate<C> + Copy + Sized
where
    C: PrimeCurve + AffineArithmetic<AffinePoint = Self> + ProjectiveArithmetic,
    Scalar<C>: Reduce<C::UInt>,
    SignatureSize<C>: ArrayLength<u8>,
{
    /// Verify the prehashed message against the provided signature
    ///
    /// Accepts the following arguments:
    ///
    /// - `z`: prehashed message to be verified
    /// - `sig`: signature to be verified against the key and message
    fn verify_prehashed(&self, z: Scalar<C>, sig: &Signature<C>) -> Result<()> {
        let (r, s) = sig.split_scalars();
        let s_inv = Option::<Scalar<C>>::from(s.invert()).ok_or_else(Error::new)?;
        let u1 = z * s_inv;
        let u2 = *r * s_inv;
        let x = ProjectivePoint::<C>::lincomb(
            &ProjectivePoint::<C>::generator(),
            &u1,
            &ProjectivePoint::<C>::from(*self),
            &u2,
        )
        .to_affine()
        .x();

        if Scalar::<C>::from_be_bytes_reduced(x) == *r {
            Ok(())
        } else {
            Err(Error::new())
        }
    }
}

/// Bind a preferred [`Digest`] algorithm to an elliptic curve type.
///
/// Generally there is a preferred variety of the SHA-2 family used with ECDSA
/// for a particular elliptic curve.
///
/// This trait can be used to specify it, and with it receive a blanket impl of
/// [`PrehashSignature`], used by [`signature_derive`][1]) for the [`Signature`]
/// type for a particular elliptic curve.
///
/// [1]: https://github.com/RustCrypto/traits/tree/master/signature/derive
#[cfg(feature = "digest")]
#[cfg_attr(docsrs, doc(cfg(feature = "digest")))]
pub trait DigestPrimitive: PrimeCurve {
    /// Preferred digest to use when computing ECDSA signatures for this
    /// elliptic curve. This should be a member of the SHA-2 family.
    type Digest: Digest;
}

#[cfg(feature = "digest")]
impl<C> PrehashSignature for Signature<C>
where
    C: DigestPrimitive,
    <FieldSize<C> as core::ops::Add>::Output: ArrayLength<u8>,
{
    type Digest = C::Digest;
}

/// Deterministically compute ECDSA ephemeral scalar `k` using the method
/// described in RFC6979.
///
/// Accepts the following parameters:
/// - `x`: secret key
/// - `z`: message scalar (i.e. message digest reduced mod p)
/// - `ad`: optional additional data, e.g. added entropy from an RNG
#[cfg(all(feature = "sign"))]
#[cfg_attr(docsrs, doc(cfg(feature = "sign")))]
pub fn rfc6979_generate_k<C, D>(
    x: &NonZeroScalar<C>,
    z: &Scalar<C>,
    ad: &[u8],
) -> Zeroizing<NonZeroScalar<C>>
where
    C: PrimeCurve + ProjectiveArithmetic,
    D: FixedOutput<OutputSize = FieldSize<C>> + BlockInput + Clone + Default + Reset + Update,
{
    // TODO(tarcieri): avoid this conversion
    let x = Zeroizing::new(ScalarCore::<C>::from(x));
    let k = rfc6979::generate_k::<D, C::UInt>(x.as_uint(), &C::ORDER, &z.to_repr(), ad);
    Zeroizing::new(NonZeroScalar::<C>::from_uint(*k).unwrap())
}