1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
use crate::arithmetic::{
scalar::{Scalar, WideScalar},
ProjectivePoint,
};
use core::ops::{Mul, MulAssign};
use elliptic_curve::{
ops::LinearCombination,
subtle::{Choice, ConditionallySelectable, ConstantTimeEq},
IsHigh,
};
#[derive(Copy, Clone, Default)]
struct LookupTable([ProjectivePoint; 8]);
impl From<&ProjectivePoint> for LookupTable {
fn from(p: &ProjectivePoint) -> Self {
let mut points = [*p; 8];
for j in 0..7 {
points[j + 1] = p + &points[j];
}
LookupTable(points)
}
}
impl LookupTable {
pub fn select(&self, x: i8) -> ProjectivePoint {
debug_assert!(x >= -8);
debug_assert!(x <= 8);
let xmask = x >> 7;
let xabs = (x + xmask) ^ xmask;
let mut t = ProjectivePoint::IDENTITY;
for j in 1..9 {
let c = (xabs as u8).ct_eq(&(j as u8));
t.conditional_assign(&self.0[j - 1], c);
}
let neg_mask = Choice::from((xmask & 1) as u8);
t.conditional_assign(&-t, neg_mask);
t
}
}
const MINUS_LAMBDA: Scalar = Scalar::from_bytes_unchecked(&[
0xac, 0x9c, 0x52, 0xb3, 0x3f, 0xa3, 0xcf, 0x1f, 0x5a, 0xd9, 0xe3, 0xfd, 0x77, 0xed, 0x9b, 0xa4,
0xa8, 0x80, 0xb9, 0xfc, 0x8e, 0xc7, 0x39, 0xc2, 0xe0, 0xcf, 0xc8, 0x10, 0xb5, 0x12, 0x83, 0xcf,
]);
const MINUS_B1: Scalar = Scalar::from_bytes_unchecked(&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc3,
]);
const MINUS_B2: Scalar = Scalar::from_bytes_unchecked(&[
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0x8a, 0x28, 0x0a, 0xc5, 0x07, 0x74, 0x34, 0x6d, 0xd7, 0x65, 0xcd, 0xa8, 0x3d, 0xb1, 0x56, 0x2c,
]);
const G1: Scalar = Scalar::from_bytes_unchecked(&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x86,
0xd2, 0x21, 0xa7, 0xd4, 0x6b, 0xcd, 0xe8, 0x6c, 0x90, 0xe4, 0x92, 0x84, 0xeb, 0x15, 0x3d, 0xab,
]);
const G2: Scalar = Scalar::from_bytes_unchecked(&[
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe4, 0x43,
0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc4, 0x22, 0x12,
]);
fn decompose_scalar(k: &Scalar) -> (Scalar, Scalar) {
let c1 = WideScalar::mul_shift_vartime(k, &G1, 272) * MINUS_B1;
let c2 = WideScalar::mul_shift_vartime(k, &G2, 272) * MINUS_B2;
let r2 = c1 + c2;
let r1 = k + r2 * MINUS_LAMBDA;
(r1, r2)
}
#[derive(Copy, Clone)]
struct Radix16Decomposition([i8; 33]);
impl Radix16Decomposition {
fn new(x: &Scalar) -> Self {
debug_assert!((x >> 128).is_zero().unwrap_u8() == 1);
let mut output = [0i8; 33];
let bytes = x.to_bytes();
for i in 0..16 {
output[2 * i] = (bytes[31 - i] & 0xf) as i8;
output[2 * i + 1] = ((bytes[31 - i] >> 4) & 0xf) as i8;
}
for i in 0..32 {
let carry = (output[i] + 8) >> 4;
output[i] -= carry << 4;
output[i + 1] += carry;
}
Self(output)
}
}
impl Default for Radix16Decomposition {
fn default() -> Self {
Self([0i8; 33])
}
}
fn static_map<T: Copy, V: Copy, const N: usize>(
f: impl Fn(T) -> V,
x: &[T; N],
default: V,
) -> [V; N] {
let mut res = [default; N];
for i in 0..N {
res[i] = f(x[i]);
}
res
}
fn static_zip_map<T: Copy, S: Copy, V: Copy, const N: usize>(
f: impl Fn(T, S) -> V,
x: &[T; N],
y: &[S; N],
default: V,
) -> [V; N] {
let mut res = [default; N];
for i in 0..N {
res[i] = f(x[i], y[i]);
}
res
}
#[inline(always)]
fn lincomb_generic<const N: usize>(xs: &[ProjectivePoint; N], ks: &[Scalar; N]) -> ProjectivePoint {
let rs = static_map(
|k| decompose_scalar(&k),
ks,
(Scalar::default(), Scalar::default()),
);
let r1s = static_map(|(r1, _r2)| r1, &rs, Scalar::default());
let r2s = static_map(|(_r1, r2)| r2, &rs, Scalar::default());
let xs_beta = static_map(|x| x.endomorphism(), xs, ProjectivePoint::default());
let r1_signs = static_map(|r| r.is_high(), &r1s, Choice::from(0u8));
let r2_signs = static_map(|r| r.is_high(), &r2s, Choice::from(0u8));
let r1s_c = static_zip_map(
|r, r_sign| Scalar::conditional_select(&r, &-r, r_sign),
&r1s,
&r1_signs,
Scalar::default(),
);
let r2s_c = static_zip_map(
|r, r_sign| Scalar::conditional_select(&r, &-r, r_sign),
&r2s,
&r2_signs,
Scalar::default(),
);
let tables1 = static_zip_map(
|x, r_sign| LookupTable::from(&ProjectivePoint::conditional_select(&x, &-x, r_sign)),
xs,
&r1_signs,
LookupTable::default(),
);
let tables2 = static_zip_map(
|x, r_sign| LookupTable::from(&ProjectivePoint::conditional_select(&x, &-x, r_sign)),
&xs_beta,
&r2_signs,
LookupTable::default(),
);
let digits1 = static_map(
|r| Radix16Decomposition::new(&r),
&r1s_c,
Radix16Decomposition::default(),
);
let digits2 = static_map(
|r| Radix16Decomposition::new(&r),
&r2s_c,
Radix16Decomposition::default(),
);
let mut acc = ProjectivePoint::IDENTITY;
for component in 0..N {
acc += &tables1[component].select(digits1[component].0[32]);
acc += &tables2[component].select(digits2[component].0[32]);
}
for i in (0..32).rev() {
for _j in 0..4 {
acc = acc.double();
}
for component in 0..N {
acc += &tables1[component].select(digits1[component].0[i]);
acc += &tables2[component].select(digits2[component].0[i]);
}
}
acc
}
#[inline(always)]
fn mul(x: &ProjectivePoint, k: &Scalar) -> ProjectivePoint {
lincomb_generic(&[*x], &[*k])
}
impl LinearCombination for ProjectivePoint {
fn lincomb(
x: &ProjectivePoint,
k: &Scalar,
y: &ProjectivePoint,
l: &Scalar,
) -> ProjectivePoint {
lincomb_generic(&[*x, *y], &[*k, *l])
}
}
impl Mul<Scalar> for ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: Scalar) -> ProjectivePoint {
mul(&self, &other)
}
}
impl Mul<&Scalar> for &ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: &Scalar) -> ProjectivePoint {
mul(self, other)
}
}
impl Mul<&Scalar> for ProjectivePoint {
type Output = ProjectivePoint;
fn mul(self, other: &Scalar) -> ProjectivePoint {
mul(&self, other)
}
}
impl MulAssign<Scalar> for ProjectivePoint {
fn mul_assign(&mut self, rhs: Scalar) {
*self = mul(self, &rhs);
}
}
impl MulAssign<&Scalar> for ProjectivePoint {
fn mul_assign(&mut self, rhs: &Scalar) {
*self = mul(self, rhs);
}
}
#[cfg(test)]
mod tests {
use crate::arithmetic::{ProjectivePoint, Scalar};
use elliptic_curve::{ops::LinearCombination, rand_core::OsRng, Field, Group};
#[test]
fn test_lincomb() {
let x = ProjectivePoint::random(&mut OsRng);
let y = ProjectivePoint::random(&mut OsRng);
let k = Scalar::random(&mut OsRng);
let l = Scalar::random(&mut OsRng);
let reference = &x * &k + &y * &l;
let test = ProjectivePoint::lincomb(&x, &k, &y, &l);
assert_eq!(reference, test);
}
}