1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//! From libsecp256k1:
//!
//! The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
//! lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
//!         0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
//!
//! "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
//! (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
//! and k2 have a small size.
//! It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
//!
//! - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//! - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
//! - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
//! - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
//!
//! The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
//! k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
//! compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
//!
//! g1, g2 are precomputed constants used to replace division with a rounded multiplication
//! when decomposing the scalar for an endomorphism-based point multiplication.
//!
//! The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
//! Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
//!
//! The derivation is described in the paper "Efficient Software Implementation of Public-Key
//! Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
//! Section 4.3 (here we use a somewhat higher-precision estimate):
//! d = a1*b2 - b1*a2
//! g1 = round((2^272)*b2/d)
//! g2 = round((2^272)*b1/d)
//!
//! (Note that 'd' is also equal to the curve order here because `[a1,b1]` and `[a2,b2]` are found
//! as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
//!
//! @fjarri:
//!
//! To be precise, the method used here is based on "An Alternate Decomposition of an Integer for
//! Faster Point Multiplication on Certain Elliptic Curves" by Young-Ho Park, Sangtae Jeong,
//! Chang Han Kim, and Jongin Lim:
//! <https://link.springer.com/chapter/10.1007%2F3-540-45664-3_23>
//!
//! The precision used for `g1` and `g2` is not enough to ensure correct approximation at all times.
//! For example, `2^272 * b1 / n` used to calculate `g2` is rounded down.
//! This means that the approximation `z' = k * g2 / 2^272` always slightly underestimates
//! the real value `z = b1 * k / n`. Therefore, when the fractional part of `z` is just slightly
//! above 0.5, it will be rounded up, but `z'` will have the fractional part slightly below 0.5 and
//! will be rounded down.
//!
//! The difference `z - z' = k * delta / 2^272`, where `delta = b1 * 2^272 mod n`.
//! The closest `z` can get to the fractional part equal to .5 is `1 / (2n)` (since `n` is odd).
//! Therefore, to guarantee that `z'` will always be rounded to the same value, one must have
//! `delta / 2^m < 1 / (2n * (n - 1))`, where `m` is the power of 2 used for the approximation.
//! This means that one should use at least `m = 512` (since `0 < delta < 1`).
//! Indeed, tests show that with only `m = 272` the approximation produces off-by-1 errors
//! occasionally.
//!
//! Now since `r1` is calculated as `k - r2 * lambda mod n`, the contract
//! `r1 + r2 * lambda = k mod n` is always satisfied. The method guarantees both `r1` and `r2` to be
//! less than `sqrt(n)` (so, fit in 128 bits) if the rounding is applied correctly - but in our case
//! the off-by-1 errors will produce different `r1` and `r2` which are not necessarily bounded by
//! `sqrt(n)`.
//!
//! In experiments, I was not able to detect any case where they would go outside the 128 bit bound,
//! but I cannot be sure that it cannot happen.

use crate::arithmetic::{
    scalar::{Scalar, WideScalar},
    ProjectivePoint,
};
use core::ops::{Mul, MulAssign};
use elliptic_curve::{
    ops::LinearCombination,
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq},
    IsHigh,
};

/// Lookup table containing precomputed values `[p, 2p, 3p, ..., 8p]`
#[derive(Copy, Clone, Default)]
struct LookupTable([ProjectivePoint; 8]);

impl From<&ProjectivePoint> for LookupTable {
    fn from(p: &ProjectivePoint) -> Self {
        let mut points = [*p; 8];
        for j in 0..7 {
            points[j + 1] = p + &points[j];
        }
        LookupTable(points)
    }
}

impl LookupTable {
    /// Given -8 <= x <= 8, returns x * p in constant time.
    pub fn select(&self, x: i8) -> ProjectivePoint {
        debug_assert!(x >= -8);
        debug_assert!(x <= 8);

        // Compute xabs = |x|
        let xmask = x >> 7;
        let xabs = (x + xmask) ^ xmask;

        // Get an array element in constant time
        let mut t = ProjectivePoint::IDENTITY;
        for j in 1..9 {
            let c = (xabs as u8).ct_eq(&(j as u8));
            t.conditional_assign(&self.0[j - 1], c);
        }
        // Now t == |x| * p.

        let neg_mask = Choice::from((xmask & 1) as u8);
        t.conditional_assign(&-t, neg_mask);
        // Now t == x * p.

        t
    }
}

const MINUS_LAMBDA: Scalar = Scalar::from_bytes_unchecked(&[
    0xac, 0x9c, 0x52, 0xb3, 0x3f, 0xa3, 0xcf, 0x1f, 0x5a, 0xd9, 0xe3, 0xfd, 0x77, 0xed, 0x9b, 0xa4,
    0xa8, 0x80, 0xb9, 0xfc, 0x8e, 0xc7, 0x39, 0xc2, 0xe0, 0xcf, 0xc8, 0x10, 0xb5, 0x12, 0x83, 0xcf,
]);

const MINUS_B1: Scalar = Scalar::from_bytes_unchecked(&[
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0xe4, 0x43, 0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc3,
]);

const MINUS_B2: Scalar = Scalar::from_bytes_unchecked(&[
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
    0x8a, 0x28, 0x0a, 0xc5, 0x07, 0x74, 0x34, 0x6d, 0xd7, 0x65, 0xcd, 0xa8, 0x3d, 0xb1, 0x56, 0x2c,
]);

const G1: Scalar = Scalar::from_bytes_unchecked(&[
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x86,
    0xd2, 0x21, 0xa7, 0xd4, 0x6b, 0xcd, 0xe8, 0x6c, 0x90, 0xe4, 0x92, 0x84, 0xeb, 0x15, 0x3d, 0xab,
]);

const G2: Scalar = Scalar::from_bytes_unchecked(&[
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe4, 0x43,
    0x7e, 0xd6, 0x01, 0x0e, 0x88, 0x28, 0x6f, 0x54, 0x7f, 0xa9, 0x0a, 0xbf, 0xe4, 0xc4, 0x22, 0x12,
]);

/// Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n.
fn decompose_scalar(k: &Scalar) -> (Scalar, Scalar) {
    // these _vartime calls are constant time since the shift amount is constant
    let c1 = WideScalar::mul_shift_vartime(k, &G1, 272) * MINUS_B1;
    let c2 = WideScalar::mul_shift_vartime(k, &G2, 272) * MINUS_B2;
    let r2 = c1 + c2;
    let r1 = k + r2 * MINUS_LAMBDA;

    (r1, r2)
}

// This needs to be an object to have Default implemented for it
// (required because it's used in static_map later)
// Otherwise we could just have a function returning an array.
#[derive(Copy, Clone)]
struct Radix16Decomposition([i8; 33]);

impl Radix16Decomposition {
    /// Returns an object containing a decomposition
    /// `[a_0, ..., a_32]` such that `sum(a_j * 2^(j * 4)) == x`,
    /// and `-8 <= a_j <= 7`.
    /// Assumes `x < 2^128`.
    fn new(x: &Scalar) -> Self {
        debug_assert!((x >> 128).is_zero().unwrap_u8() == 1);

        // The resulting decomposition can be negative, so, despite the limit on `x`,
        // it can have up to 256 bits, and we need an additional byte to store the carry.
        let mut output = [0i8; 33];

        // Step 1: change radix.
        // Convert from radix 256 (bytes) to radix 16 (nibbles)
        let bytes = x.to_bytes();
        for i in 0..16 {
            output[2 * i] = (bytes[31 - i] & 0xf) as i8;
            output[2 * i + 1] = ((bytes[31 - i] >> 4) & 0xf) as i8;
        }

        // Step 2: recenter coefficients from [0,16) to [-8,8)
        for i in 0..32 {
            let carry = (output[i] + 8) >> 4;
            output[i] -= carry << 4;
            output[i + 1] += carry;
        }

        Self(output)
    }
}

impl Default for Radix16Decomposition {
    fn default() -> Self {
        Self([0i8; 33])
    }
}

/// Maps an array `x` to an array using the predicate `f`.
/// We can't use the standard `map()` because as of Rust 1.51 we cannot collect into arrays.
/// Consequently, since we cannot have an uninitialized array (without `unsafe`),
/// a default value needs to be provided.
fn static_map<T: Copy, V: Copy, const N: usize>(
    f: impl Fn(T) -> V,
    x: &[T; N],
    default: V,
) -> [V; N] {
    let mut res = [default; N];
    for i in 0..N {
        res[i] = f(x[i]);
    }
    res
}

/// Maps two arrays `x` and `y` into an array using a predicate `f` that takes two arguments.
fn static_zip_map<T: Copy, S: Copy, V: Copy, const N: usize>(
    f: impl Fn(T, S) -> V,
    x: &[T; N],
    y: &[S; N],
    default: V,
) -> [V; N] {
    let mut res = [default; N];
    for i in 0..N {
        res[i] = f(x[i], y[i]);
    }
    res
}

/// Calculates a linear combination `sum(x[i] * k[i])`, `i = 0..N`
#[inline(always)]
fn lincomb_generic<const N: usize>(xs: &[ProjectivePoint; N], ks: &[Scalar; N]) -> ProjectivePoint {
    let rs = static_map(
        |k| decompose_scalar(&k),
        ks,
        (Scalar::default(), Scalar::default()),
    );
    let r1s = static_map(|(r1, _r2)| r1, &rs, Scalar::default());
    let r2s = static_map(|(_r1, r2)| r2, &rs, Scalar::default());

    let xs_beta = static_map(|x| x.endomorphism(), xs, ProjectivePoint::default());

    let r1_signs = static_map(|r| r.is_high(), &r1s, Choice::from(0u8));
    let r2_signs = static_map(|r| r.is_high(), &r2s, Choice::from(0u8));

    let r1s_c = static_zip_map(
        |r, r_sign| Scalar::conditional_select(&r, &-r, r_sign),
        &r1s,
        &r1_signs,
        Scalar::default(),
    );
    let r2s_c = static_zip_map(
        |r, r_sign| Scalar::conditional_select(&r, &-r, r_sign),
        &r2s,
        &r2_signs,
        Scalar::default(),
    );

    let tables1 = static_zip_map(
        |x, r_sign| LookupTable::from(&ProjectivePoint::conditional_select(&x, &-x, r_sign)),
        xs,
        &r1_signs,
        LookupTable::default(),
    );
    let tables2 = static_zip_map(
        |x, r_sign| LookupTable::from(&ProjectivePoint::conditional_select(&x, &-x, r_sign)),
        &xs_beta,
        &r2_signs,
        LookupTable::default(),
    );

    let digits1 = static_map(
        |r| Radix16Decomposition::new(&r),
        &r1s_c,
        Radix16Decomposition::default(),
    );
    let digits2 = static_map(
        |r| Radix16Decomposition::new(&r),
        &r2s_c,
        Radix16Decomposition::default(),
    );

    let mut acc = ProjectivePoint::IDENTITY;
    for component in 0..N {
        acc += &tables1[component].select(digits1[component].0[32]);
        acc += &tables2[component].select(digits2[component].0[32]);
    }

    for i in (0..32).rev() {
        for _j in 0..4 {
            acc = acc.double();
        }

        for component in 0..N {
            acc += &tables1[component].select(digits1[component].0[i]);
            acc += &tables2[component].select(digits2[component].0[i]);
        }
    }
    acc
}

#[inline(always)]
fn mul(x: &ProjectivePoint, k: &Scalar) -> ProjectivePoint {
    lincomb_generic(&[*x], &[*k])
}

impl LinearCombination for ProjectivePoint {
    fn lincomb(
        x: &ProjectivePoint,
        k: &Scalar,
        y: &ProjectivePoint,
        l: &Scalar,
    ) -> ProjectivePoint {
        lincomb_generic(&[*x, *y], &[*k, *l])
    }
}

impl Mul<Scalar> for ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: Scalar) -> ProjectivePoint {
        mul(&self, &other)
    }
}

impl Mul<&Scalar> for &ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: &Scalar) -> ProjectivePoint {
        mul(self, other)
    }
}

impl Mul<&Scalar> for ProjectivePoint {
    type Output = ProjectivePoint;

    fn mul(self, other: &Scalar) -> ProjectivePoint {
        mul(&self, other)
    }
}

impl MulAssign<Scalar> for ProjectivePoint {
    fn mul_assign(&mut self, rhs: Scalar) {
        *self = mul(self, &rhs);
    }
}

impl MulAssign<&Scalar> for ProjectivePoint {
    fn mul_assign(&mut self, rhs: &Scalar) {
        *self = mul(self, rhs);
    }
}

#[cfg(test)]
mod tests {
    use crate::arithmetic::{ProjectivePoint, Scalar};
    use elliptic_curve::{ops::LinearCombination, rand_core::OsRng, Field, Group};

    #[test]
    fn test_lincomb() {
        let x = ProjectivePoint::random(&mut OsRng);
        let y = ProjectivePoint::random(&mut OsRng);
        let k = Scalar::random(&mut OsRng);
        let l = Scalar::random(&mut OsRng);

        let reference = &x * &k + &y * &l;
        let test = ProjectivePoint::lincomb(&x, &k, &y, &l);
        assert_eq!(reference, test);
    }
}