1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
//! Wasmtime's embedding API
//!
//! Wasmtime is a WebAssembly engine for JIT-complied or ahead-of-time compiled
//! WebAssembly modules. More information about the Wasmtime project as a whole
//! can be found [in the documentation book](https://docs.wasmtime.dev) whereas
//! this documentation mostly focuses on the API reference of the `wasmtime`
//! crate itself.
//!
//! This crate contains an API used to interact with WebAssembly modules. For
//! example you can compile modules, instantiate them, call them, etc. As an
//! embedder of WebAssembly you can also provide WebAssembly modules
//! functionality from the host by creating host-defined functions, memories,
//! globals, etc, which can do things that WebAssembly cannot (such as print to
//! the screen).
//!
//! The `wasmtime` crate has similar concepts to the
//! the [JS WebAssembly
//! API](https://developer.mozilla.org/en-US/docs/WebAssembly) as well as the
//! [proposed C API](https://github.com/webassembly/wasm-c-api), but the Rust
//! API is designed for efficiency, ergonomics, and expressivity in Rust. As
//! with all other Rust code you're guaranteed that programs will be safe (not
//! have undefined behavior or segfault) so long as you don't use `unsafe` in
//! your own program. With `wasmtime` you can easily and conveniently embed a
//! WebAssembly runtime with confidence that the WebAssembly is safely
//! sandboxed.
//!
//! An example of using Wasmtime looks like:
//!
//! ```
//! use anyhow::Result;
//! use wasmtime::*;
//!
//! fn main() -> Result<()> {
//! // Modules can be compiled through either the text or binary format
//! let engine = Engine::default();
//! let wat = r#"
//! (module
//! (import "host" "hello" (func $host_hello (param i32)))
//!
//! (func (export "hello")
//! i32.const 3
//! call $host_hello)
//! )
//! "#;
//! let module = Module::new(&engine, wat)?;
//!
//! // All wasm objects operate within the context of a "store". Each
//! // `Store` has a type parameter to store host-specific data, which in
//! // this case we're using `4` for.
//! let mut store = Store::new(&engine, 4);
//! let host_hello = Func::wrap(&mut store, |caller: Caller<'_, u32>, param: i32| {
//! println!("Got {} from WebAssembly", param);
//! println!("my host state is: {}", caller.data());
//! });
//!
//! // Instantiation of a module requires specifying its imports and then
//! // afterwards we can fetch exports by name, as well as asserting the
//! // type signature of the function with `get_typed_func`.
//! let instance = Instance::new(&mut store, &module, &[host_hello.into()])?;
//! let hello = instance.get_typed_func::<(), (), _>(&mut store, "hello")?;
//!
//! // And finally we can call the wasm!
//! hello.call(&mut store, ())?;
//!
//! Ok(())
//! }
//! ```
//!
//! ## Core Concepts
//!
//! There are a number of core types and concepts that are important to be aware
//! of when using the `wasmtime` crate:
//!
//! * [`Engine`] - a global compilation environment for WebAssembly. An
//! [`Engine`] is an object that can be shared concurrently across threads and
//! is created with a [`Config`] to tweak various settings. Compilation of any
//! WebAssembly requires first configuring and creating an [`Engine`].
//!
//! * [`Module`] - a compiled WebAssembly module. This structure represents
//! in-memory JIT code which is ready to execute after being instantiated.
//! It's often important to cache instances of a [`Module`] because creation
//! (compilation) can be expensive. Note that [`Module`] is safe to share
//! across threads, and can be created from a WebAssembly binary and an
//! [`Engine`] with [`Module::new`]. Caching can either happen with
//! [`Engine::precompile_module`] or [`Module::serialize`], feeding those
//! bytes back into [`Module::deserialize`].
//!
//! * [`Store`] - container for all information related to WebAssembly objects
//! such as functions, instances, memories, etc. A [`Store<T>`][`Store`]
//! allows customization of the `T` to store arbitrary host data within a
//! [`Store`]. This host data can be accessed through host functions via the
//! [`Caller`] function parameter in host-defined functions. A [`Store`] is
//! required for all WebAssembly operations, such as calling a wasm function.
//! The [`Store`] is passed in as a "context" to methods like [`Func::call`].
//! Dropping a [`Store`] will deallocate all memory associated with
//! WebAssembly objects within the [`Store`].
//!
//! * [`Instance`] - an instantiated WebAssembly module. An instance is where
//! you can actually acquire a [`Func`] from, for example, to call.
//!
//! * [`Func`] - a WebAssembly (or host) function. This can be acquired as the
//! export of an [`Instance`] to call WebAssembly functions, or it can be
//! created via functions like [`Func::wrap`] to wrap host-defined
//! functionality and give it to WebAssembly.
//!
//! * [`Table`], [`Global`], [`Memory`] - other WebAssembly objects which can
//! either be defined on the host or in wasm itself (via instances). These all
//! have various ways of being interacted with like [`Func`].
//!
//! All "store-connected" types such as [`Func`], [`Memory`], etc, require the
//! store to be passed in as a context to each method. Methods in wasmtime
//! frequently have their first parameter as either [`impl
//! AsContext`][`AsContext`] or [`impl AsContextMut`][`AsContextMut`]. These
//! traits are implemented for a variety of types, allowing you to, for example,
//! pass the following types into methods:
//!
//! * `&Store<T>`
//! * `&mut Store<T>`
//! * `&Caller<'_, T>`
//! * `&mut Caller<'_, T>`
//! * `StoreContext<'_, T>`
//! * `StoreContextMut<'_, T>`
//!
//! A [`Store`] is the sole owner of all WebAssembly internals. Types like
//! [`Func`] point within the [`Store`] and require the [`Store`] to be provided
//! to actually access the internals of the WebAssembly function, for instance.
//!
//! ## Linking
//!
//! WebAssembly modules almost always require functionality from the host to
//! perform I/O-like tasks. They might refer to quite a few pieces of host
//! functionality, WASI, or maybe even a number of other wasm modules. To assist
//! with managing this a [`Linker`] type is provided to instantiate modules.
//!
//! A [`Linker`] performs name-based resolution of the imports of a WebAssembly
//! module so the [`Linker::instantiate`] method does not take an `imports`
//! argument like [`Instance::new`] does. Methods like [`Linker::define`] or
//! [`Linker::func_wrap`] can be used to define names within a [`Linker`] to
//! later be used for instantiation.
//!
//! For example we can reimplement the above example with a `Linker`:
//!
//! ```
//! use anyhow::Result;
//! use wasmtime::*;
//!
//! fn main() -> Result<()> {
//! let engine = Engine::default();
//! let wat = r#"
//! (module
//! (import "host" "hello" (func $host_hello (param i32)))
//!
//! (func (export "hello")
//! i32.const 3
//! call $host_hello)
//! )
//! "#;
//! let module = Module::new(&engine, wat)?;
//!
//! // Create a `Linker` and define our host function in it:
//! let mut linker = Linker::new(&engine);
//! linker.func_wrap("host", "hello", |caller: Caller<'_, u32>, param: i32| {
//! println!("Got {} from WebAssembly", param);
//! println!("my host state is: {}", caller.data());
//! })?;
//!
//! // Use the `linker` to instantiate the module, which will automatically
//! // resolve the imports of the module using name-based resolution.
//! let mut store = Store::new(&engine, 0);
//! let instance = linker.instantiate(&mut store, &module)?;
//! let hello = instance.get_typed_func::<(), (), _>(&mut store, "hello")?;
//! hello.call(&mut store, ())?;
//!
//! Ok(())
//! }
//! ```
//!
//! The [`Linker`] type also transparently handles Commands and Reactors
//! as defined by WASI.
//!
//! ## Example Architecture
//!
//! To better understand how Wasmtime types interact with each other let's walk
//! through, at a high-level, an example of how you might use WebAssembly. In
//! our use case let's say we have a web server where we'd like to run some
//! custom WebAssembly on each request. To ensure requests are entirely isolated
//! from each other, though, we'll be creating a new [`Store`] for each
//! request.
//!
//! When the server starts, we'll start off by creating an [`Engine`] (and maybe
//! tweaking [`Config`] settings if necessary). This [`Engine`] will be the only
//! engine for the lifetime of the server itself. Next, we can compile our
//! WebAssembly. You'd create a [`Module`] through the [`Module::new`] API.
//! This will generate JIT code and perform expensive compilation tasks
//! up-front. Finally the last step of initialization would be to create a
//! [`Linker`] which will later be used to instantiate modules, adding
//! functionality like WASI to the linker too.
//!
//! After that setup, the server starts up as usual and is ready to receive
//! requests. Upon receiving a request you'd then create a [`Store`] with
//! [`Store::new`] referring to the original [`Engine`]. Using your [`Module`]
//! and [`Linker`] from before you'd then call [`Linker::instantiate`] to
//! instantiate our module for the request. Both of these operations are
//! designed to be as cheap as possible.
//!
//! With an [`Instance`] you can then invoke various exports and interact with
//! the WebAssembly module. Once the request is finished, the [`Store`]
//! is dropped and everything will be deallocated. Note that if the same
//! [`Store`] were used for every request then that would have all requests
//! sharing resources and nothing would ever get deallocated, causing memory
//! usage to baloon and would achive less isolation between requests.
//!
//! ## WASI
//!
//! The `wasmtime` crate does not natively provide support for WASI, but you can
//! use the [`wasmtime-wasi`] crate for that purpose. With [`wasmtime-wasi`] all
//! WASI functions can be added to a [`Linker`] and then used to instantiate
//! WASI-using modules. For more information see the [WASI example in the
//! documentation](https://docs.wasmtime.dev/examples-rust-wasi.html).
//!
//! [`wasmtime-wasi`]: https://crates.io/crates/wasmtime-wasi
//!
//! ## Cross-store usage of items
//!
//! In `wasmtime` wasm items such as [`Global`] and [`Memory`] "belong" to a
//! [`Store`]. The store they belong to is the one they were created with
//! (passed in as a parameter) or instantiated with. This store is the only
//! store that can be used to interact with wasm items after they're created.
//!
//! The `wasmtime` crate will panic if the [`Store`] argument passed in to these
//! operations is incorrect. In other words it's considered a programmer error
//! rather than a recoverable error for the wrong [`Store`] to be used when
//! calling APIs.
//!
//! ## Crate Features
//!
//! The `wasmtime` crate comes with a number of compile-time features that can
//! be used to customize what features it supports. Some of these features are
//! just internal details, but some affect the public API of the `wasmtime`
//! crate. Be sure to check the API you're using to see if any crate features
//! are enabled.
//!
//! * `cranelift` - Enabled by default, this features enables using Cranelift at
//! runtime to compile a WebAssembly module to native code. This feature is
//! required to process and compile new WebAssembly modules. If this feature
//! is disabled then the only way to create a [`Module`] is to use the
//! [`Module::deserialize`] function with a precompiled artifact (typically
//! compiled with the same version of Wasmtime, just somewhere else).
//!
//! * `cache` - Enabled by default, this feature adds support for wasmtime to
//! perform internal caching of modules in a global location. This must still
//! be enabled explicitly through [`Config::cache_config_load`] or
//! [`Config::cache_config_load_default`].
//!
//! * `wat` - Enabled by default, this feature adds support for accepting the
//! text format of WebAssembly in [`Module::new`]. The text format will be
//! automatically recognized and translated to binary when compiling a
//! module.
//!
//! * `parallel-compilation` - Enabled by default, this feature enables support
//! for compiling functions of a module in parallel with `rayon`.
//!
//! * `async` - Enabled by default, this feature enables APIs and runtime
//! support for defining asynchronous host functions and calling WebAssembly
//! asynchronously.
//!
//! * `jitdump` - Enabled by default, this feature compiles in support for the
//! jitdump runtime profiling format. The profiler can be selected with
//! [`Config::profiler`].
//!
//! * `vtune` - Enabled by default, this feature compiles in support for VTune
//! profiling of JIT code.
//!
//! * `all-arch` - Not enabled by default. This feature compiles in support for
//! all architectures for both the JIT compiler and the `wasmtime compile` CLI
//! command.
//!
//! * `pooling-allocator` - Enabled by default, this feature adds support for
//! the pooling allocation strategy enabled via
//! [`Config::allocation_strategy`]. The pooling allocator can enable more
//! efficient reuse of resources for high-concurrency and
//! high-instantiation-count scenarios.
//!
//! * `memory-init-cow` - Enabled by default, this feature builds in support
//! for, on supported platforms, initializing wasm linear memories with
//! copy-on-write heap mappings. This makes instantiation much faster by
//! `mmap`-ing the initial memory image into place instead of copying memory
//! into place, allowing sharing pages that end up only getting read. Note
//! that this is simply compile-time support and this must also be enabled at
//! run-time via [`Config::memory_init_cow`] (which is also enabled by
//! default).
//!
//! ## Examples
//!
//! In addition to the examples below be sure to check out the [online embedding
//! documentation][rustdocs] as well as the [online list of examples][examples]
//!
//! [rustdocs]: https://bytecodealliance.github.io/wasmtime/lang-rust.html
//! [examples]: https://bytecodealliance.github.io/wasmtime/examples-rust-embed.html
//!
//! An example of using WASI looks like:
//!
//! ```no_run
//! # use anyhow::Result;
//! # use wasmtime::*;
//! use wasmtime_wasi::sync::WasiCtxBuilder;
//!
//! # fn main() -> Result<()> {
//! // Compile our module and create a `Linker` which has WASI functions defined
//! // within it.
//! let engine = Engine::default();
//! let module = Module::from_file(&engine, "foo.wasm")?;
//! let mut linker = Linker::new(&engine);
//! wasmtime_wasi::add_to_linker(&mut linker, |cx| cx)?;
//!
//! // Configure and create a `WasiCtx`, which WASI functions need access to
//! // through the host state of the store (which in this case is the host state
//! // of the store)
//! let wasi_ctx = WasiCtxBuilder::new().inherit_stdio().build();
//! let mut store = Store::new(&engine, wasi_ctx);
//!
//! // Instantiate our module with the imports we've created, and run it.
//! let instance = linker.instantiate(&mut store, &module)?;
//! // ...
//!
//! # Ok(())
//! # }
//! ```
//!
//! An example of reading a string from a wasm module:
//!
//! ```
//! use std::str;
//!
//! # use wasmtime::*;
//! # fn main() -> anyhow::Result<()> {
//! let mut store = Store::default();
//! let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
//! // Use our `caller` context to learn about the memory export of the
//! // module which called this host function.
//! let mem = match caller.get_export("memory") {
//! Some(Extern::Memory(mem)) => mem,
//! _ => return Err(Trap::new("failed to find host memory")),
//! };
//!
//! // Use the `ptr` and `len` values to get a subslice of the wasm-memory
//! // which we'll attempt to interpret as utf-8.
//! let data = mem.data(&caller)
//! .get(ptr as u32 as usize..)
//! .and_then(|arr| arr.get(..len as u32 as usize));
//! let string = match data {
//! Some(data) => match str::from_utf8(data) {
//! Ok(s) => s,
//! Err(_) => return Err(Trap::new("invalid utf-8")),
//! },
//! None => return Err(Trap::new("pointer/length out of bounds")),
//! };
//! assert_eq!(string, "Hello, world!");
//! println!("{}", string);
//! Ok(())
//! });
//! let module = Module::new(
//! store.engine(),
//! r#"
//! (module
//! (import "" "" (func $log_str (param i32 i32)))
//! (func (export "foo")
//! i32.const 4 ;; ptr
//! i32.const 13 ;; len
//! call $log_str)
//! (memory (export "memory") 1)
//! (data (i32.const 4) "Hello, world!"))
//! "#,
//! )?;
//! let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
//! let foo = instance.get_typed_func::<(), (), _>(&mut store, "foo")?;
//! foo.call(&mut store, ())?;
//! # Ok(())
//! # }
//! ```
#![allow(unknown_lints)]
#![deny(missing_docs, rustdoc::broken_intra_doc_links)]
#![doc(test(attr(deny(warnings))))]
#![doc(test(attr(allow(dead_code, unused_variables, unused_mut))))]
#![cfg_attr(nightlydoc, feature(doc_cfg))]
#![cfg_attr(not(feature = "default"), allow(dead_code, unused_imports))]
#[macro_use]
mod func;
mod config;
mod engine;
mod externals;
mod instance;
mod limits;
mod linker;
mod memory;
mod module;
mod r#ref;
mod signatures;
mod store;
mod trampoline;
mod trap;
mod types;
mod values;
pub use crate::config::*;
pub use crate::engine::*;
pub use crate::externals::*;
pub use crate::func::*;
pub use crate::instance::{Instance, InstancePre};
pub use crate::limits::*;
pub use crate::linker::*;
pub use crate::memory::*;
pub use crate::module::{FrameInfo, FrameSymbol, Module};
pub use crate::r#ref::ExternRef;
#[cfg(feature = "async")]
pub use crate::store::CallHookHandler;
pub use crate::store::{AsContext, AsContextMut, CallHook, Store, StoreContext, StoreContextMut};
pub use crate::trap::*;
pub use crate::types::*;
pub use crate::values::*;
#[cfg(feature = "component-model")]
pub mod component;
cfg_if::cfg_if! {
if #[cfg(all(target_os = "macos", not(feature = "posix-signals-on-macos")))] {
// no extensions for macOS at this time
} else if #[cfg(unix)] {
pub mod unix;
} else if #[cfg(windows)] {
pub mod windows;
} else {
// ... unknown os!
}
}
fn _assert_send_sync() {
fn _assert<T: Send + Sync>() {}
fn _assert_send<T: Send>(_t: T) {}
_assert::<Engine>();
_assert::<Config>();
_assert::<(Func, TypedFunc<(), ()>, Global, Table, Memory)>();
_assert::<Instance>();
_assert::<Module>();
_assert::<Store<()>>();
_assert::<StoreContext<'_, ()>>();
_assert::<StoreContextMut<'_, ()>>();
_assert::<Caller<'_, ()>>();
_assert::<Linker<()>>();
_assert::<Linker<*mut u8>>();
_assert::<ExternRef>();
_assert::<InstancePre<()>>();
_assert::<InstancePre<*mut u8>>();
#[cfg(feature = "async")]
fn _call_async(s: &mut Store<()>, f: Func) {
_assert_send(f.call_async(&mut *s, &[], &mut []))
}
#[cfg(feature = "async")]
fn _typed_call_async(s: &mut Store<()>, f: TypedFunc<(), ()>) {
_assert_send(f.call_async(&mut *s, ()))
}
#[cfg(feature = "async")]
fn _instantiate_async(s: &mut Store<()>, m: &Module) {
_assert_send(Instance::new_async(s, m, &[]))
}
}