1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//! Legalization of heaps.
//!
//! This module exports the `expand_heap_addr` function which transforms a `heap_addr`
//! instruction into code that depends on the kind of heap referenced.

use crate::cursor::{Cursor, FuncCursor};
use crate::flowgraph::ControlFlowGraph;
use crate::ir::condcodes::IntCC;
use crate::ir::immediates::Uimm32;
use crate::ir::{self, InstBuilder};
use crate::isa::TargetIsa;

/// Expand a `heap_addr` instruction according to the definition of the heap.
pub fn expand_heap_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    offset: ir::Value,
    access_size: Uimm32,
) {
    match func.heaps[heap].style {
        ir::HeapStyle::Dynamic { bound_gv } => dynamic_addr(
            isa,
            inst,
            heap,
            offset,
            u64::from(access_size),
            bound_gv,
            func,
        ),
        ir::HeapStyle::Static { bound } => static_addr(
            isa,
            inst,
            heap,
            offset,
            u64::from(access_size),
            bound.into(),
            func,
            cfg,
        ),
    }
}

/// Expand a `heap_addr` for a dynamic heap.
fn dynamic_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    heap: ir::Heap,
    offset: ir::Value,
    access_size: u64,
    bound_gv: ir::GlobalValue,
    func: &mut ir::Function,
) {
    let offset_ty = func.dfg.value_type(offset);
    let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
    let min_size = func.heaps[heap].min_size.into();
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);

    // Start with the bounds check. Trap if `offset + access_size > bound`.
    let bound = pos.ins().global_value(addr_ty, bound_gv);
    let (cc, lhs, bound) = if access_size == 1 {
        // `offset > bound - 1` is the same as `offset >= bound`.
        (IntCC::UnsignedGreaterThanOrEqual, offset, bound)
    } else if access_size <= min_size {
        // We know that bound >= min_size, so here we can compare `offset > bound - access_size`
        // without wrapping.
        let adj_bound = pos.ins().iadd_imm(bound, -(access_size as i64));
        (IntCC::UnsignedGreaterThan, offset, adj_bound)
    } else {
        // We need an overflow check for the adjusted offset.
        let access_size_val = pos.ins().iconst(addr_ty, access_size as i64);
        let (adj_offset, overflow) = pos.ins().iadd_ifcout(offset, access_size_val);
        pos.ins().trapif(
            isa.unsigned_add_overflow_condition(),
            overflow,
            ir::TrapCode::HeapOutOfBounds,
        );
        (IntCC::UnsignedGreaterThan, adj_offset, bound)
    };
    let oob = pos.ins().icmp(cc, lhs, bound);
    pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);

    let spectre_oob_comparison = if isa.flags().enable_heap_access_spectre_mitigation() {
        Some((cc, lhs, bound))
    } else {
        None
    };

    compute_addr(
        isa,
        inst,
        heap,
        addr_ty,
        offset,
        pos.func,
        spectre_oob_comparison,
    );
}

/// Expand a `heap_addr` for a static heap.
fn static_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    heap: ir::Heap,
    mut offset: ir::Value,
    access_size: u64,
    bound: u64,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
) {
    let offset_ty = func.dfg.value_type(offset);
    let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // The goal here is to trap if `offset + access_size > bound`.
    //
    // This first case is a trivial case where we can easily trap.
    if access_size > bound {
        // This will simply always trap since `offset >= 0`.
        pos.ins().trap(ir::TrapCode::HeapOutOfBounds);
        pos.func.dfg.replace(inst).iconst(addr_ty, 0);

        // Split Block, as the trap is a terminator instruction.
        let curr_block = pos.current_block().expect("Cursor is not in a block");
        let new_block = pos.func.dfg.make_block();
        pos.insert_block(new_block);
        cfg.recompute_block(pos.func, curr_block);
        cfg.recompute_block(pos.func, new_block);
        return;
    }

    // After the trivial case is done we're now mostly interested in trapping
    // if `offset > bound - access_size`. We know `bound - access_size` here is
    // non-negative from the above comparison.
    //
    // If we can know `bound - access_size >= 4GB` then with a 32-bit offset
    // we're guaranteed:
    //
    //      bound - access_size >= 4GB > offset
    //
    // or, in other words, `offset < bound - access_size`, meaning we can't trap
    // for any value of `offset`.
    //
    // With that we have an optimization here where with 32-bit offsets and
    // `bound - access_size >= 4GB` we can omit a bounds check.
    let limit = bound - access_size;
    let mut spectre_oob_comparison = None;
    offset = cast_offset_to_pointer_ty(offset, offset_ty, addr_ty, &mut pos);
    if offset_ty != ir::types::I32 || limit < 0xffff_ffff {
        // Here we want to test the condition `offset > limit` and if that's
        // true then this is an out-of-bounds access and needs to trap. For ARM
        // and other RISC architectures it's easier to test against an immediate
        // that's even instead of odd, so if `limit` is odd then we instead test
        // for `offset >= limit + 1`.
        //
        // The thinking behind this is that:
        //
        //      A >= B + 1  =>  A - 1 >= B  =>  A > B
        //
        // where the last step here is true because A/B are integers, which
        // should mean that `A >= B + 1` is an equivalent check for `A > B`
        let (cc, lhs, limit_imm) = if limit & 1 == 1 {
            let limit = limit as i64 + 1;
            (IntCC::UnsignedGreaterThanOrEqual, offset, limit)
        } else {
            let limit = limit as i64;
            (IntCC::UnsignedGreaterThan, offset, limit)
        };
        let oob = pos.ins().icmp_imm(cc, lhs, limit_imm);
        pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
        if isa.flags().enable_heap_access_spectre_mitigation() {
            let limit = pos.ins().iconst(addr_ty, limit_imm);
            spectre_oob_comparison = Some((cc, lhs, limit));
        }
    }

    compute_addr(
        isa,
        inst,
        heap,
        addr_ty,
        offset,
        pos.func,
        spectre_oob_comparison,
    );
}

fn cast_offset_to_pointer_ty(
    offset: ir::Value,
    offset_ty: ir::Type,
    addr_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if offset_ty == addr_ty {
        return offset;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(offset_ty.bits() < addr_ty.bits());

    // Convert `offset` to `addr_ty`.
    let extended_offset = pos.ins().uextend(addr_ty, offset);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    pos.func
        .dfg
        .add_value_label_alias(extended_offset, loc, offset);

    extended_offset
}

/// Emit code for the base address computation of a `heap_addr` instruction.
fn compute_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    heap: ir::Heap,
    addr_ty: ir::Type,
    offset: ir::Value,
    func: &mut ir::Function,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<(IntCC, ir::Value, ir::Value)>,
) {
    debug_assert_eq!(func.dfg.value_type(offset), addr_ty);
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        pos.ins().get_pinned_reg(isa.pointer_type())
    } else {
        let base_gv = pos.func.heaps[heap].base;
        pos.ins().global_value(addr_ty, base_gv)
    };

    if let Some((cc, a, b)) = spectre_oob_comparison {
        let final_addr = pos.ins().iadd(base, offset);
        let zero = pos.ins().iconst(addr_ty, 0);
        let flags = pos.ins().ifcmp(a, b);
        pos.func
            .dfg
            .replace(inst)
            .selectif_spectre_guard(addr_ty, cc, flags, zero, final_addr);
    } else {
        pos.func.dfg.replace(inst).iadd(base, offset);
    }
}