1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*!
This module provides two `std::io::Read` implementations:

* [`read::FrameDecoder`](struct.FrameDecoder.html)
  wraps another `std::io::Read` implemenation, and decompresses data encoded
  using the Snappy frame format. Use this if you have a compressed data source
  and wish to read it as uncompressed data.
* [`read::FrameEncoder`](struct.FrameEncoder.html)
  wraps another `std::io::Read` implemenation, and compresses data encoded
  using the Snappy frame format. Use this if you have uncompressed data source
  and wish to read it as compressed data.

Typically, `read::FrameDecoder` is the version that you'll want.
*/

use std::cmp;
use std::fmt;
use std::io;

use crate::bytes;
use crate::compress::Encoder;
use crate::crc32::CheckSummer;
use crate::decompress::{decompress_len, Decoder};
use crate::error::Error;
use crate::frame::{
    compress_frame, ChunkType, CHUNK_HEADER_AND_CRC_SIZE,
    MAX_COMPRESS_BLOCK_SIZE, STREAM_BODY, STREAM_IDENTIFIER,
};
use crate::MAX_BLOCK_SIZE;

/// The maximum size of a compressed block, including the header and stream
/// identifier, that can be emitted by FrameEncoder.
const MAX_READ_FRAME_ENCODER_BLOCK_SIZE: usize = STREAM_IDENTIFIER.len()
    + CHUNK_HEADER_AND_CRC_SIZE
    + MAX_COMPRESS_BLOCK_SIZE;

/// A reader for decompressing a Snappy stream.
///
/// This `FrameDecoder` wraps any other reader that implements `std::io::Read`.
/// Bytes read from this reader are decompressed using the
/// [Snappy frame format](https://github.com/google/snappy/blob/master/framing_format.txt)
/// (file extension `sz`, MIME type `application/x-snappy-framed`).
///
/// This reader can potentially make many small reads from the underlying
/// stream depending on its format, therefore, passing in a buffered reader
/// may be beneficial.
pub struct FrameDecoder<R: io::Read> {
    /// The underlying reader.
    r: R,
    /// A Snappy decoder that we reuse that does the actual block based
    /// decompression.
    dec: Decoder,
    /// A CRC32 checksummer that is configured to either use the portable
    /// fallback version or the SSE4.2 accelerated version when the right CPU
    /// features are available.
    checksummer: CheckSummer,
    /// The compressed bytes buffer, taken from the underlying reader.
    src: Vec<u8>,
    /// The decompressed bytes buffer. Bytes are decompressed from src to dst
    /// before being passed back to the caller.
    dst: Vec<u8>,
    /// Index into dst: starting point of bytes not yet given back to caller.
    dsts: usize,
    /// Index into dst: ending point of bytes not yet given back to caller.
    dste: usize,
    /// Whether we've read the special stream header or not.
    read_stream_ident: bool,
}

impl<R: io::Read> FrameDecoder<R> {
    /// Create a new reader for streaming Snappy decompression.
    pub fn new(rdr: R) -> FrameDecoder<R> {
        FrameDecoder {
            r: rdr,
            dec: Decoder::new(),
            checksummer: CheckSummer::new(),
            src: vec![0; MAX_COMPRESS_BLOCK_SIZE],
            dst: vec![0; MAX_BLOCK_SIZE],
            dsts: 0,
            dste: 0,
            read_stream_ident: false,
        }
    }

    /// Gets a reference to the underlying reader in this decoder.
    pub fn get_ref(&self) -> &R {
        &self.r
    }

    /// Gets a mutable reference to the underlying reader in this decoder.
    ///
    /// Note that mutation of the stream may result in surprising results if
    /// this decoder is continued to be used.
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.r
    }
}

impl<R: io::Read> io::Read for FrameDecoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        macro_rules! fail {
            ($err:expr) => {
                return Err(io::Error::from($err))
            };
        }
        loop {
            if self.dsts < self.dste {
                let len = cmp::min(self.dste - self.dsts, buf.len());
                let dste = self.dsts.checked_add(len).unwrap();
                buf[0..len].copy_from_slice(&self.dst[self.dsts..dste]);
                self.dsts = dste;
                return Ok(len);
            }
            if !read_exact_eof(&mut self.r, &mut self.src[0..4])? {
                return Ok(0);
            }
            let ty = ChunkType::from_u8(self.src[0]);
            if !self.read_stream_ident {
                if ty != Ok(ChunkType::Stream) {
                    fail!(Error::StreamHeader { byte: self.src[0] });
                }
                self.read_stream_ident = true;
            }
            let len64 = bytes::read_u24_le(&self.src[1..]) as u64;
            if len64 > self.src.len() as u64 {
                fail!(Error::UnsupportedChunkLength {
                    len: len64,
                    header: false,
                });
            }
            let len = len64 as usize;
            match ty {
                Err(b) if 0x02 <= b && b <= 0x7F => {
                    // Spec says that chunk types 0x02-0x7F are reserved and
                    // conformant decoders must return an error.
                    fail!(Error::UnsupportedChunkType { byte: b });
                }
                Err(b) if 0x80 <= b && b <= 0xFD => {
                    // Spec says that chunk types 0x80-0xFD are reserved but
                    // skippable.
                    self.r.read_exact(&mut self.src[0..len])?;
                }
                Err(b) => {
                    // Can never happen. 0x02-0x7F and 0x80-0xFD are handled
                    // above in the error case. That leaves 0x00, 0x01, 0xFE
                    // and 0xFF, each of which correspond to one of the four
                    // defined chunk types.
                    unreachable!("BUG: unhandled chunk type: {}", b);
                }
                Ok(ChunkType::Padding) => {
                    // Just read and move on.
                    self.r.read_exact(&mut self.src[0..len])?;
                }
                Ok(ChunkType::Stream) => {
                    if len != STREAM_BODY.len() {
                        fail!(Error::UnsupportedChunkLength {
                            len: len64,
                            header: true,
                        })
                    }
                    self.r.read_exact(&mut self.src[0..len])?;
                    if &self.src[0..len] != STREAM_BODY {
                        fail!(Error::StreamHeaderMismatch {
                            bytes: self.src[0..len].to_vec(),
                        });
                    }
                }
                Ok(ChunkType::Uncompressed) => {
                    if len < 4 {
                        fail!(Error::UnsupportedChunkLength {
                            len: len as u64,
                            header: false,
                        });
                    }
                    let expected_sum = bytes::io_read_u32_le(&mut self.r)?;
                    let n = len - 4;
                    if n > self.dst.len() {
                        fail!(Error::UnsupportedChunkLength {
                            len: n as u64,
                            header: false,
                        });
                    }
                    self.r.read_exact(&mut self.dst[0..n])?;
                    let got_sum =
                        self.checksummer.crc32c_masked(&self.dst[0..n]);
                    if expected_sum != got_sum {
                        fail!(Error::Checksum {
                            expected: expected_sum,
                            got: got_sum,
                        });
                    }
                    self.dsts = 0;
                    self.dste = n;
                }
                Ok(ChunkType::Compressed) => {
                    if len < 4 {
                        fail!(Error::UnsupportedChunkLength {
                            len: len as u64,
                            header: false,
                        });
                    }
                    let expected_sum = bytes::io_read_u32_le(&mut self.r)?;
                    let sn = len - 4;
                    if sn > self.src.len() {
                        fail!(Error::UnsupportedChunkLength {
                            len: len64,
                            header: false,
                        });
                    }
                    self.r.read_exact(&mut self.src[0..sn])?;
                    let dn = decompress_len(&self.src)?;
                    if dn > self.dst.len() {
                        fail!(Error::UnsupportedChunkLength {
                            len: dn as u64,
                            header: false,
                        });
                    }
                    self.dec
                        .decompress(&self.src[0..sn], &mut self.dst[0..dn])?;
                    let got_sum =
                        self.checksummer.crc32c_masked(&self.dst[0..dn]);
                    if expected_sum != got_sum {
                        fail!(Error::Checksum {
                            expected: expected_sum,
                            got: got_sum,
                        });
                    }
                    self.dsts = 0;
                    self.dste = dn;
                }
            }
        }
    }
}

impl<R: fmt::Debug + io::Read> fmt::Debug for FrameDecoder<R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("FrameDecoder")
            .field("r", &self.r)
            .field("dec", &self.dec)
            .field("checksummer", &self.checksummer)
            .field("src", &"[...]")
            .field("dst", &"[...]")
            .field("dsts", &self.dsts)
            .field("dste", &self.dste)
            .field("read_stream_ident", &self.read_stream_ident)
            .finish()
    }
}

/// A reader for compressing data using snappy as it is read.
///
/// This `FrameEncoder` wraps any other reader that implements `std::io::Read`.
/// Bytes read from this reader are compressed using the
/// [Snappy frame format](https://github.com/google/snappy/blob/master/framing_format.txt)
/// (file extension `sz`, MIME type `application/x-snappy-framed`).
///
/// Usually you'll want
/// [`read::FrameDecoder`](struct.FrameDecoder.html)
/// (for decompressing while reading) or
/// [`write::FrameEncoder`](../write/struct.FrameEncoder.html)
/// (for compressing while writing) instead.
///
/// Unlike `FrameDecoder`, this will attempt to make large reads roughly
/// equivalent to the size of a single Snappy block. Therefore, callers may not
/// benefit from using a buffered reader.
pub struct FrameEncoder<R: io::Read> {
    /// Internally, we split `FrameEncoder` in two to keep the borrow checker
    /// happy. The `inner` member contains everything that `read_frame` needs
    /// to fetch a frame's worth of data and compress it.
    inner: Inner<R>,
    /// Data that we've encoded and are ready to return to our caller.
    dst: Vec<u8>,
    /// Starting point of bytes in `dst` not yet given back to the caller.
    dsts: usize,
    /// Ending point of bytes in `dst` that we want to give to our caller.
    dste: usize,
}

struct Inner<R: io::Read> {
    /// The underlying data source.
    r: R,
    /// An encoder that we reuse that does the actual block based compression.
    enc: Encoder,
    /// A CRC32 checksummer that is configured to either use the portable
    /// fallback version or the SSE4.2 accelerated version when the right CPU
    /// features are available.
    checksummer: CheckSummer,
    /// Data taken from the underlying `r`, and not yet compressed.
    src: Vec<u8>,
    /// Have we written the standard snappy header to `dst` yet?
    wrote_stream_ident: bool,
}

impl<R: io::Read> FrameEncoder<R> {
    /// Create a new reader for streaming Snappy compression.
    pub fn new(rdr: R) -> FrameEncoder<R> {
        FrameEncoder {
            inner: Inner {
                r: rdr,
                enc: Encoder::new(),
                checksummer: CheckSummer::new(),
                src: vec![0; MAX_BLOCK_SIZE],
                wrote_stream_ident: false,
            },
            dst: vec![0; MAX_READ_FRAME_ENCODER_BLOCK_SIZE],
            dsts: 0,
            dste: 0,
        }
    }

    /// Gets a reference to the underlying reader in this decoder.
    pub fn get_ref(&self) -> &R {
        &self.inner.r
    }

    /// Gets a mutable reference to the underlying reader in this decoder.
    ///
    /// Note that mutation of the stream may result in surprising results if
    /// this encoder is continued to be used.
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.inner.r
    }

    /// Read previously compressed data from `self.dst`, returning the number of
    /// bytes read. If `self.dst` is empty, returns 0.
    fn read_from_dst(&mut self, buf: &mut [u8]) -> usize {
        let available_bytes = self.dste - self.dsts;
        let count = cmp::min(available_bytes, buf.len());
        buf[..count].copy_from_slice(&self.dst[self.dsts..self.dsts + count]);
        self.dsts += count;
        count
    }
}

impl<R: io::Read> io::Read for FrameEncoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        // Try reading previously compressed bytes from our `dst` buffer, if
        // any.
        let count = self.read_from_dst(buf);

        if count > 0 {
            // We had some bytes in our `dst` buffer that we used.
            Ok(count)
        } else if buf.len() >= MAX_READ_FRAME_ENCODER_BLOCK_SIZE {
            // Our output `buf` is big enough that we can directly write into
            // it, so bypass `dst` entirely.
            self.inner.read_frame(buf)
        } else {
            // We need to refill `self.dst`, and then return some bytes from
            // that.
            let count = self.inner.read_frame(&mut self.dst)?;
            self.dsts = 0;
            self.dste = count;
            Ok(self.read_from_dst(buf))
        }
    }
}

impl<R: io::Read> Inner<R> {
    /// Read from `self.r`, and create a new frame, writing it to `dst`, which
    /// must be at least `MAX_READ_FRAME_ENCODER_BLOCK_SIZE` bytes in size.
    fn read_frame(&mut self, dst: &mut [u8]) -> io::Result<usize> {
        debug_assert!(dst.len() >= MAX_READ_FRAME_ENCODER_BLOCK_SIZE);

        // We make one read to the underlying reader. If the underlying reader
        // doesn't fill the buffer but there are still bytes to be read, then
        // compression won't be optimal. The alternative would be to block
        // until our buffer is maximally full (or we see EOF), but this seems
        // more surprising. In general, io::Read implementations should try to
        // fill the caller's buffer as much as they can, so this seems like the
        // better choice.
        let nread = self.r.read(&mut self.src)?;
        if nread == 0 {
            return Ok(0);
        }

        // If we haven't yet written the stream header to `dst`, write it.
        let mut dst_write_start = 0;
        if !self.wrote_stream_ident {
            dst[0..STREAM_IDENTIFIER.len()].copy_from_slice(STREAM_IDENTIFIER);
            dst_write_start += STREAM_IDENTIFIER.len();
            self.wrote_stream_ident = true;
        }

        // Reserve space for our chunk header. We need to use `split_at_mut` so
        // that we can get two mutable slices pointing at non-overlapping parts
        // of `dst`.
        let (chunk_header, remaining_dst) =
            dst[dst_write_start..].split_at_mut(CHUNK_HEADER_AND_CRC_SIZE);
        dst_write_start += CHUNK_HEADER_AND_CRC_SIZE;

        // Compress our frame if possible, telling `compress_frame` to always
        // put the output in `dst`.
        let frame_data = compress_frame(
            &mut self.enc,
            self.checksummer,
            &self.src[..nread],
            chunk_header,
            remaining_dst,
            true,
        )?;
        Ok(dst_write_start + frame_data.len())
    }
}

impl<R: fmt::Debug + io::Read> fmt::Debug for FrameEncoder<R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("FrameEncoder")
            .field("inner", &self.inner)
            .field("dst", &"[...]")
            .field("dsts", &self.dsts)
            .field("dste", &self.dste)
            .finish()
    }
}

impl<R: fmt::Debug + io::Read> fmt::Debug for Inner<R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Inner")
            .field("r", &self.r)
            .field("enc", &self.enc)
            .field("checksummer", &self.checksummer)
            .field("src", &"[...]")
            .field("wrote_stream_ident", &self.wrote_stream_ident)
            .finish()
    }
}

// read_exact_eof is like Read::read_exact, except it detects EOF
// and returns Ok(false) instead of an error.
//
// If buf was read successfully, it returns Ok(true).
fn read_exact_eof<R: io::Read>(
    rdr: &mut R,
    buf: &mut [u8],
) -> io::Result<bool> {
    match rdr.read(buf) {
        // EOF
        Ok(0) => Ok(false),
        // Read everything w/ the read call
        Ok(i) if i == buf.len() => Ok(true),
        // There's some bytes left to fill, which can be deferred to read_exact
        Ok(i) => {
            rdr.read_exact(&mut buf[i..])?;
            Ok(true)
        }
        Err(e) => Err(e),
    }
}