1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
// This file is part of Substrate.
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Substrate runtime interface
//!
//! This crate provides types, traits and macros around runtime interfaces. A runtime interface is
//! a fixed interface between a Substrate runtime and a Substrate node. For a native runtime the
//! interface maps to a direct function call of the implementation. For a wasm runtime the interface
//! maps to an external function call. These external functions are exported by the wasm executor
//! and they map to the same implementation as the native calls.
//!
//! # Using a type in a runtime interface
//!
//! Any type that should be used in a runtime interface as argument or return value needs to
//! implement [`RIType`]. The associated type
//! [`FFIType`](./trait.RIType.html#associatedtype.FFIType) is the type that is used in the FFI
//! function to represent the actual type. For example `[T]` is represented by an `u64`. The slice
//! pointer and the length will be mapped to an `u64` value. For more information see this
//! [table](#ffi-type-and-conversion). The FFI function definition is used when calling from the
//! wasm runtime into the node.
//!
//! Traits are used to convert from a type to the corresponding
//! [`RIType::FFIType`](./trait.RIType.html#associatedtype.FFIType).
//! Depending on where and how a type should be used in a function signature, a combination of the
//! following traits need to be implemented:
//! <!-- markdown-link-check-enable -->
//! 1. Pass as function argument: [`wasm::IntoFFIValue`] and [`host::FromFFIValue`]
//! 2. As function return value: [`wasm::FromFFIValue`] and [`host::IntoFFIValue`]
//! 3. Pass as mutable function argument: [`host::IntoPreallocatedFFIValue`]
//!
//! The traits are implemented for most of the common types like `[T]`, `Vec<T>`, arrays and
//! primitive types.
//!
//! For custom types, we provide the [`PassBy`](./pass_by#PassBy) trait and strategies that define
//! how a type is passed between the wasm runtime and the node. Each strategy also provides a derive
//! macro to simplify the implementation.
//!
//! # Performance
//!
//! To not waste any more performance when calling into the node, not all types are SCALE encoded
//! when being passed as arguments between the wasm runtime and the node. For most types that
//! are raw bytes like `Vec<u8>`, `[u8]` or `[u8; N]` we pass them directly, without SCALE encoding
//! them in front of. The implementation of [`RIType`] each type provides more information on how
//! the data is passed.
//!
//! # Declaring a runtime interface
//!
//! Declaring a runtime interface is similar to declaring a trait in Rust:
//!
//! ```
//! #[sp_runtime_interface::runtime_interface]
//! trait RuntimeInterface {
//! fn some_function(value: &[u8]) -> bool {
//! value.iter().all(|v| *v > 125)
//! }
//! }
//! ```
//!
//! For more information on declaring a runtime interface, see
//! [`#[runtime_interface]`](./attr.runtime_interface.html).
//!
//! # FFI type and conversion
//!
//! The following table documents how values of types are passed between the wasm and
//! the host side and how they are converted into the corresponding type.
//!
//! | Type | FFI type | Conversion |
//! |----|----|----|
//! | `u8` | `u32` | zero-extended to 32-bits |
//! | `u16` | `u32` | zero-extended to 32-bits |
//! | `u32` | `u32` | `Identity` |
//! | `u64` | `u64` | `Identity` |
//! | `i128` | `u32` | `v.as_ptr()` (pointer to a 16 byte array) |
//! | `i8` | `i32` | sign-extended to 32-bits |
//! | `i16` | `i32` | sign-extended to 32-bits |
//! | `i32` | `i32` | `Identity` |
//! | `i64` | `i64` | `Identity` |
//! | `u128` | `u32` | `v.as_ptr()` (pointer to a 16 byte array) |
//! | `bool` | `u32` | `if v { 1 } else { 0 }` |
//! | `&str` | `u64` | <code>v.len() 32bit << 32 | v.as_ptr() 32bit</code> |
//! | `&[u8]` | `u64` | <code>v.len() 32bit << 32 | v.as_ptr() 32bit</code> |
//! | `Vec<u8>` | `u64` | <code>v.len() 32bit << 32 | v.as_ptr() 32bit</code> |
//! | `Vec<T> where T: Encode` | `u64` | `let e = v.encode();`<br><br><code>e.len() 32bit << 32
//! | e.as_ptr() 32bit</code> | | `&[T] where T: Encode` | `u64` | `let e =
//! v.encode();`<br><br><code>e.len() 32bit << 32 | e.as_ptr() 32bit</code> | | `[u8; N]` |
//! `u32` | `v.as_ptr()` | | `*const T` | `u32` | `Identity` |
//! | `Option<T>` | `u64` | `let e = v.encode();`<br><br><code>e.len() 32bit << 32 | e.as_ptr()
//! 32bit</code> | | [`T where T: PassBy<PassBy=Inner>`](./pass_by#Inner) | Depends on inner |
//! Depends on inner | | [`T where T: PassBy<PassBy=Codec>`](./pass_by#Codec)|`u64`|<code>v.len()
//! 32bit << 32 |v.as_ptr() 32bit</code>|
//!
//! `Identity` means that the value is converted directly into the corresponding FFI type.
#![cfg_attr(not(feature = "std"), no_std)]
extern crate self as sp_runtime_interface;
#[doc(hidden)]
#[cfg(feature = "std")]
pub use sp_wasm_interface;
#[doc(hidden)]
pub use sp_tracing;
#[doc(hidden)]
pub use sp_std;
/// Attribute macro for transforming a trait declaration into a runtime interface.
///
/// A runtime interface is a fixed interface between a Substrate compatible runtime and the
/// native node. This interface is callable from a native and a wasm runtime. The macro will
/// generate the corresponding code for the native implementation and the code for calling from
/// the wasm side to the native implementation.
///
/// The macro expects the runtime interface declaration as trait declaration:
///
/// ```
/// # use sp_runtime_interface::runtime_interface;
///
/// #[runtime_interface]
/// trait Interface {
/// /// A function that can be called from native/wasm.
/// ///
/// /// The implementation given to this function is only compiled on native.
/// fn call(data: &[u8]) -> Vec<u8> {
/// // Here you could call some rather complex code that only compiles on native or
/// // is way faster in native than executing it in wasm.
/// Vec::new()
/// }
/// /// Call function, but different version.
/// ///
/// /// For new runtimes, only function with latest version is reachable.
/// /// But old version (above) is still accessible for old runtimes.
/// /// Default version is 1.
/// #[version(2)]
/// fn call(data: &[u8]) -> Vec<u8> {
/// // Here you could call some rather complex code that only compiles on native or
/// // is way faster in native than executing it in wasm.
/// [17].to_vec()
/// }
///
/// /// Call function, different version and only being registered.
/// ///
/// /// This `register_only` version is only being registered, aka exposed to the runtime,
/// /// but the runtime will still use the version 2 of this function. This is useful for when
/// /// new host functions should be introduced. Adding new host functions requires that all
/// /// nodes have the host functions available, because otherwise they fail at instantiation
/// /// of the runtime. With `register_only` the function will not be used when compiling the
/// /// runtime, but it will already be there for a future version of the runtime that will
/// /// switch to using these host function.
/// #[version(3, register_only)]
/// fn call(data: &[u8]) -> Vec<u8> {
/// // Here you could call some rather complex code that only compiles on native or
/// // is way faster in native than executing it in wasm.
/// [18].to_vec()
/// }
///
/// /// A function can take a `&self` or `&mut self` argument to get access to the
/// /// `Externalities`. (The generated method does not require
/// /// this argument, so the function can be called just with the `optional` argument)
/// fn set_or_clear(&mut self, optional: Option<Vec<u8>>) {
/// match optional {
/// Some(value) => self.set_storage([1, 2, 3, 4].to_vec(), value),
/// None => self.clear_storage(&[1, 2, 3, 4]),
/// }
/// }
/// }
/// ```
///
///
/// The given example will generate roughly the following code for native:
///
/// ```
/// // The name of the trait is converted to snake case and used as mod name.
/// //
/// // Be aware that this module is not `public`, the visibility of the module is determined based
/// // on the visibility of the trait declaration.
/// mod interface {
/// trait Interface {
/// fn call_version_1(data: &[u8]) -> Vec<u8>;
/// fn call_version_2(data: &[u8]) -> Vec<u8>;
/// fn call_version_3(data: &[u8]) -> Vec<u8>;
/// fn set_or_clear_version_1(&mut self, optional: Option<Vec<u8>>);
/// }
///
/// impl Interface for &mut dyn sp_externalities::Externalities {
/// fn call_version_1(data: &[u8]) -> Vec<u8> { Vec::new() }
/// fn call_version_2(data: &[u8]) -> Vec<u8> { [17].to_vec() }
/// fn call_version_3(data: &[u8]) -> Vec<u8> { [18].to_vec() }
/// fn set_or_clear_version_1(&mut self, optional: Option<Vec<u8>>) {
/// match optional {
/// Some(value) => self.set_storage([1, 2, 3, 4].to_vec(), value),
/// None => self.clear_storage(&[1, 2, 3, 4]),
/// }
/// }
/// }
///
/// pub fn call(data: &[u8]) -> Vec<u8> {
/// // only latest version is exposed
/// call_version_2(data)
/// }
///
/// fn call_version_1(data: &[u8]) -> Vec<u8> {
/// <&mut dyn sp_externalities::Externalities as Interface>::call_version_1(data)
/// }
///
/// fn call_version_2(data: &[u8]) -> Vec<u8> {
/// <&mut dyn sp_externalities::Externalities as Interface>::call_version_2(data)
/// }
///
/// fn call_version_3(data: &[u8]) -> Vec<u8> {
/// <&mut dyn sp_externalities::Externalities as Interface>::call_version_3(data)
/// }
///
/// pub fn set_or_clear(optional: Option<Vec<u8>>) {
/// set_or_clear_version_1(optional)
/// }
///
/// fn set_or_clear_version_1(optional: Option<Vec<u8>>) {
/// sp_externalities::with_externalities(|mut ext| Interface::set_or_clear_version_1(&mut ext, optional))
/// .expect("`set_or_clear` called outside of an Externalities-provided environment.")
/// }
///
/// /// This type implements the `HostFunctions` trait (from `sp-wasm-interface`) and
/// /// provides the host implementation for the wasm side. The host implementation converts the
/// /// arguments from wasm to native and calls the corresponding native function.
/// ///
/// /// This type needs to be passed to the wasm executor, so that the host functions will be
/// /// registered in the executor.
/// pub struct HostFunctions;
/// }
/// ```
///
///
/// The given example will generate roughly the following code for wasm:
///
/// ```
/// mod interface {
/// mod extern_host_functions_impls {
/// extern "C" {
/// /// Every function is exported as `ext_TRAIT_NAME_FUNCTION_NAME_version_VERSION`.
/// ///
/// /// `TRAIT_NAME` is converted into snake case.
/// ///
/// /// The type for each argument of the exported function depends on
/// /// `<ARGUMENT_TYPE as RIType>::FFIType`.
/// ///
/// /// `data` holds the pointer and the length to the `[u8]` slice.
/// pub fn ext_Interface_call_version_1(data: u64) -> u64;
/// /// `optional` holds the pointer and the length of the encoded value.
/// pub fn ext_Interface_set_or_clear_version_1(optional: u64);
/// }
/// }
///
/// /// The type is actually `ExchangeableFunction` (from `sp-runtime-interface`).
/// ///
/// /// This can be used to replace the implementation of the `call` function.
/// /// Instead of calling into the host, the callee will automatically call the other
/// /// implementation.
/// ///
/// /// To replace the implementation:
/// ///
/// /// `host_call.replace_implementation(some_other_impl)`
/// pub static host_call: () = ();
/// pub static host_set_or_clear: () = ();
///
/// pub fn call(data: &[u8]) -> Vec<u8> {
/// // This is the actual call: `host_call.get()(data)`
/// //
/// // But that does not work for several reasons in this example, so we just return an
/// // empty vector.
/// Vec::new()
/// }
///
/// pub fn set_or_clear(optional: Option<Vec<u8>>) {
/// // Same as above
/// }
/// }
/// ```
///
/// # Argument types
///
/// The macro supports any kind of argument type, as long as it implements [`RIType`] and the
/// required `FromFFIValue`/`IntoFFIValue`. The macro will convert each
/// argument to the corresponding FFI representation and will call into the host using this FFI
/// representation. On the host each argument is converted back to the native representation
/// and the native implementation is called. Any return value is handled in the same way.
///
/// # Wasm only interfaces
///
/// Some interfaces are only required from within the wasm runtime e.g. the allocator
/// interface. To support this, the macro can be called like `#[runtime_interface(wasm_only)]`.
/// This instructs the macro to make two significant changes to the generated code:
///
/// 1. The generated functions are not callable from the native side.
/// 2. The trait as shown above is not implemented for [`Externalities`] and is instead
/// implemented for `FunctionContext` (from `sp-wasm-interface`).
///
/// # Disable tracing
/// By adding `no_tracing` to the list of options you can prevent the wasm-side interface from
/// generating the default `sp-tracing`-calls. Note that this is rarely needed but only meant
/// for the case when that would create a circular dependency. You usually _do not_ want to add
/// this flag, as tracing doesn't cost you anything by default anyways (it is added as a no-op)
/// but is super useful for debugging later.
pub use sp_runtime_interface_proc_macro::runtime_interface;
#[doc(hidden)]
#[cfg(feature = "std")]
pub use sp_externalities::{
set_and_run_with_externalities, with_externalities, ExtensionStore, Externalities,
ExternalitiesExt,
};
#[doc(hidden)]
pub use codec;
#[cfg(feature = "std")]
pub mod host;
pub(crate) mod impls;
pub mod pass_by;
#[cfg(any(not(feature = "std"), doc))]
pub mod wasm;
mod util;
pub use util::{pack_ptr_and_len, unpack_ptr_and_len};
/// Something that can be used by the runtime interface as type to communicate between wasm and the
/// host.
///
/// Every type that should be used in a runtime interface function signature needs to implement
/// this trait.
pub trait RIType {
/// The ffi type that is used to represent `Self`.
#[cfg(feature = "std")]
type FFIType: sp_wasm_interface::IntoValue
+ sp_wasm_interface::TryFromValue
+ sp_wasm_interface::WasmTy;
#[cfg(not(feature = "std"))]
type FFIType;
}
/// A pointer that can be used in a runtime interface function signature.
#[cfg(not(feature = "std"))]
pub type Pointer<T> = *mut T;
/// A pointer that can be used in a runtime interface function signature.
#[cfg(feature = "std")]
pub type Pointer<T> = sp_wasm_interface::Pointer<T>;