1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
use core::cell::UnsafeCell;
use core::default::Default;
use core::fmt;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr::NonNull;
use core::sync::atomic::{spin_loop_hint as cpu_relax, AtomicUsize, Ordering};

/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// An [`RwLockUpgradeableGuard`](RwLockUpgradeableGuard) can be upgraded to a
/// writable guard through the [`RwLockUpgradeableGuard::upgrade`](RwLockUpgradeableGuard::upgrade)
/// [`RwLockUpgradeableGuard::try_upgrade`](RwLockUpgradeableGuard::try_upgrade) functions.
/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
/// functions.
///
/// Based on Facebook's
/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
/// This implementation is unfair to writers - if the lock always has readers, then no writers will
/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
/// when there are existing readers. However if the lock is that highly contended and writes are
/// crucial then this implementation may be a poor choice.
///
/// # Examples
///
/// ```
/// use spin;
///
/// let lock = spin::RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
///     let r1 = lock.read();
///     let r2 = lock.read();
///     assert_eq!(*r1, 5);
///     assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
///     let mut w = lock.write();
///     *w += 1;
///     assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RwLock<T: ?Sized> {
    lock: AtomicUsize,
    data: UnsafeCell<T>,
}

const READER: usize = 1 << 2;
const UPGRADED: usize = 1 << 1;
const WRITER: usize = 1;

/// A guard from which the protected data can be read
///
/// When the guard falls out of scope it will decrement the read count,
/// potentially releasing the lock.
#[derive(Debug)]
pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
    lock: &'a AtomicUsize,
    data: NonNull<T>,
}

/// A guard to which the protected data can be written
///
/// When the guard falls out of scope it will release the lock.
#[derive(Debug)]
pub struct RwLockWriteGuard<'a, T: 'a + ?Sized> {
    lock: &'a AtomicUsize,
    data: NonNull<T>,
    #[doc(hidden)]
    _invariant: PhantomData<&'a mut T>,
}

/// A guard from which the protected data can be read, and can be upgraded
/// to a writable guard if needed
///
/// No writers or other upgradeable guards can exist while this is in scope. New reader
/// creation is prevented (to alleviate writer starvation) but there may be existing readers
/// when the lock is acquired.
///
/// When the guard falls out of scope it will release the lock.
#[derive(Debug)]
pub struct RwLockUpgradeableGuard<'a, T: 'a + ?Sized> {
    lock: &'a AtomicUsize,
    data: NonNull<T>,
    #[doc(hidden)]
    _invariant: PhantomData<&'a mut T>,
}

// Same unsafe impls as `std::sync::RwLock`
unsafe impl<T: ?Sized + Send> Send for RwLock<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for RwLock<T> {}

impl<T> RwLock<T> {
    /// Creates a new spinlock wrapping the supplied data.
    ///
    /// May be used statically:
    ///
    /// ```
    /// use spin;
    ///
    /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
    ///
    /// fn demo() {
    ///     let lock = RW_LOCK.read();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    #[inline]
    pub const fn new(user_data: T) -> RwLock<T> {
        RwLock {
            lock: AtomicUsize::new(0),
            data: UnsafeCell::new(user_data),
        }
    }

    /// Consumes this `RwLock`, returning the underlying data.
    #[inline]
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock.
        let RwLock { data, .. } = self;
        data.into_inner()
    }
}

impl<T: ?Sized> RwLock<T> {
    /// Locks this rwlock with shared read access, blocking the current thread
    /// until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which
    /// hold the lock. There may be other readers currently inside the lock when
    /// this method returns. This method does not provide any guarantees with
    /// respect to the ordering of whether contentious readers or writers will
    /// acquire the lock first.
    ///
    /// Returns an RAII guard which will release this thread's shared access
    /// once it is dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.read();
    ///     // The lock is now locked and the data can be read
    ///     println!("{}", *data);
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn read(&self) -> RwLockReadGuard<T> {
        loop {
            match self.try_read() {
                Some(guard) => return guard,
                None => cpu_relax(),
            }
        }
    }

    /// Attempt to acquire this lock with shared read access.
    ///
    /// This function will never block and will return immediately if `read`
    /// would otherwise succeed. Returns `Some` of an RAII guard which will
    /// release the shared access of this thread when dropped, or `None` if the
    /// access could not be granted. This method does not provide any
    /// guarantees with respect to the ordering of whether contentious readers
    /// or writers will acquire the lock first.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_read() {
    ///         Some(data) => {
    ///             // The lock is now locked and the data can be read
    ///             println!("{}", *data);
    ///             // The lock is dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
        let value = self.lock.fetch_add(READER, Ordering::Acquire);

        // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
        // This helps reduce writer starvation.
        if value & (WRITER | UPGRADED) != 0 {
            // Lock is taken, undo.
            self.lock.fetch_sub(READER, Ordering::Release);
            None
        } else {
            Some(RwLockReadGuard {
                lock: &self.lock,
                data: unsafe { NonNull::new_unchecked(self.data.get()) },
            })
        }
    }

    /// Force decrement the reader count.
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
    /// live, or if called more times than `read` has been called, but can be
    /// useful in FFI contexts where the caller doesn't know how to deal with
    /// RAII. The underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_read_decrement(&self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }

    /// Force unlock exclusive write access.
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
    /// live, or if called when there are current readers, but can be useful in
    /// FFI contexts where the caller doesn't know how to deal with RAII. The
    /// underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_write_unlock(&self) {
        debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
        self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }

    #[inline(always)]
    fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T>> {
        if compare_exchange(
            &self.lock,
            0,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            Some(RwLockWriteGuard {
                lock: &self.lock,
                data: unsafe { NonNull::new_unchecked(self.data.get()) },
                _invariant: PhantomData,
            })
        } else {
            None
        }
    }

    /// Lock this rwlock with exclusive write access, blocking the current
    /// thread until it can be acquired.
    ///
    /// This function will not return while other writers or other readers
    /// currently have access to the lock.
    ///
    /// Returns an RAII guard which will drop the write access of this rwlock
    /// when dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.write();
    ///     // The lock is now locked and the data can be written
    ///     *data += 1;
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn write(&self) -> RwLockWriteGuard<T> {
        loop {
            match self.try_write_internal(false) {
                Some(guard) => return guard,
                None => cpu_relax(),
            }
        }
    }

    /// Attempt to lock this rwlock with exclusive write access.
    ///
    /// This function does not ever block, and it will return `None` if a call
    /// to `write` would otherwise block. If successful, an RAII guard is
    /// returned.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_write() {
    ///         Some(mut data) => {
    ///             // The lock is now locked and the data can be written
    ///             *data += 1;
    ///             // The lock is implicitly dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_write(&self) -> Option<RwLockWriteGuard<T>> {
        self.try_write_internal(true)
    }

    /// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
    /// Upgrades can be done through the [`RwLockUpgradeableGuard::upgrade`](RwLockUpgradeableGuard::upgrade) method.
    #[inline]
    pub fn upgradeable_read(&self) -> RwLockUpgradeableGuard<T> {
        loop {
            match self.try_upgradeable_read() {
                Some(guard) => return guard,
                None => cpu_relax(),
            }
        }
    }

    /// Tries to obtain an upgradeable lock guard.
    #[inline]
    pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradeableGuard<T>> {
        if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
            Some(RwLockUpgradeableGuard {
                lock: &self.lock,
                data: unsafe { NonNull::new_unchecked(self.data.get()) },
                _invariant: PhantomData,
            })
        } else {
            // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
            // When they unlock, they will clear the bit.
            None
        }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for RwLock<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.try_read() {
            Some(guard) => write!(f, "RwLock {{ data: ")
                .and_then(|()| (&*guard).fmt(f))
                .and_then(|()| write!(f, "}}")),
            None => write!(f, "RwLock {{ <locked> }}"),
        }
    }
}

impl<T: ?Sized + Default> Default for RwLock<T> {
    fn default() -> RwLock<T> {
        RwLock::new(Default::default())
    }
}

impl<'rwlock, T: ?Sized> RwLockUpgradeableGuard<'rwlock, T> {
    #[inline(always)]
    fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T>, Self> {
        if compare_exchange(
            &self.lock,
            UPGRADED,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            // Upgrade successful
            let out = Ok(RwLockWriteGuard {
                lock: &self.lock,
                data: self.data,
                _invariant: PhantomData,
            });

            // Forget the old guard so its destructor doesn't run
            mem::forget(self);

            out
        } else {
            Err(self)
        }
    }

    /// Upgrades an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    /// let writable = upgradeable.upgrade();
    /// ```
    #[inline]
    pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T> {
        loop {
            self = match self.try_upgrade_internal(false) {
                Ok(guard) => return guard,
                Err(e) => e,
            };

            cpu_relax();
        }
    }

    /// Tries to upgrade an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    ///
    /// match upgradeable.try_upgrade() {
    ///     Ok(writable) => /* upgrade successful - use writable lock guard */ (),
    ///     Err(upgradeable) => /* upgrade unsuccessful */ (),
    /// };
    /// ```
    #[inline]
    pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T>, Self> {
        self.try_upgrade_internal(true)
    }

    #[inline]
    /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(1);
    ///
    /// let upgradeable = mylock.upgradeable_read();
    /// assert!(mylock.try_read().is_none());
    /// assert_eq!(*upgradeable, 1);
    ///
    /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
    /// assert!(mylock.try_read().is_some());
    /// assert_eq!(*readable, 1);
    /// ```
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.lock.fetch_add(READER, Ordering::Acquire);

        RwLockReadGuard {
            lock: &self.lock,
            data: self.data,
        }

        // Dropping self removes the UPGRADED bit
    }
}

impl<'rwlock, T: ?Sized> RwLockWriteGuard<'rwlock, T> {
    /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let mut writable = mylock.write();
    /// *writable = 1;
    ///
    /// let readable = writable.downgrade(); // This is guaranteed not to spin
    /// # let readable_2 = mylock.try_read().unwrap();
    /// assert_eq!(*readable, 1);
    /// ```
    #[inline]
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.lock.fetch_add(READER, Ordering::Acquire);

        RwLockReadGuard {
            lock: &self.lock,
            data: self.data,
        }

        // Dropping self removes the WRITER bit
    }
}

impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { self.data.as_ref() }
    }
}

impl<'rwlock, T: ?Sized> Deref for RwLockUpgradeableGuard<'rwlock, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { self.data.as_ref() }
    }
}

impl<'rwlock, T: ?Sized> Deref for RwLockWriteGuard<'rwlock, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { self.data.as_ref() }
    }
}

impl<'rwlock, T: ?Sized> DerefMut for RwLockWriteGuard<'rwlock, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { self.data.as_mut() }
    }
}

impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
    fn drop(&mut self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }
}

impl<'rwlock, T: ?Sized> Drop for RwLockUpgradeableGuard<'rwlock, T> {
    fn drop(&mut self) {
        debug_assert_eq!(
            self.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
            UPGRADED
        );
        self.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
    }
}

impl<'rwlock, T: ?Sized> Drop for RwLockWriteGuard<'rwlock, T> {
    fn drop(&mut self) {
        debug_assert_eq!(self.lock.load(Ordering::Relaxed) & WRITER, WRITER);

        // Writer is responsible for clearing both WRITER and UPGRADED bits.
        // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
        self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }
}

#[inline(always)]
fn compare_exchange(
    atomic: &AtomicUsize,
    current: usize,
    new: usize,
    success: Ordering,
    failure: Ordering,
    strong: bool,
) -> Result<usize, usize> {
    if strong {
        atomic.compare_exchange(current, new, success, failure)
    } else {
        atomic.compare_exchange_weak(current, new, success, failure)
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    use super::*;

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let l = RwLock::new(());
        drop(l.read());
        drop(l.write());
        drop((l.read(), l.read()));
        drop(l.write());
    }

    // TODO: needs RNG
    //#[test]
    //fn frob() {
    //    static R: RwLock = RwLock::new();
    //    const N: usize = 10;
    //    const M: usize = 1000;
    //
    //    let (tx, rx) = channel::<()>();
    //    for _ in 0..N {
    //        let tx = tx.clone();
    //        thread::spawn(move|| {
    //            let mut rng = rand::thread_rng();
    //            for _ in 0..M {
    //                if rng.gen_weighted_bool(N) {
    //                    drop(R.write());
    //                } else {
    //                    drop(R.read());
    //                }
    //            }
    //            drop(tx);
    //        });
    //    }
    //    drop(tx);
    //    let _ = rx.recv();
    //    unsafe { R.destroy(); }
    //}

    #[test]
    fn test_rw_arc() {
        let arc = Arc::new(RwLock::new(0));
        let arc2 = arc.clone();
        let (tx, rx) = channel();

        thread::spawn(move || {
            let mut lock = arc2.write();
            for _ in 0..10 {
                let tmp = *lock;
                *lock = -1;
                thread::yield_now();
                *lock = tmp + 1;
            }
            tx.send(()).unwrap();
        });

        // Readers try to catch the writer in the act
        let mut children = Vec::new();
        for _ in 0..5 {
            let arc3 = arc.clone();
            children.push(thread::spawn(move || {
                let lock = arc3.read();
                assert!(*lock >= 0);
            }));
        }

        // Wait for children to pass their asserts
        for r in children {
            assert!(r.join().is_ok());
        }

        // Wait for writer to finish
        rx.recv().unwrap();
        let lock = arc.read();
        assert_eq!(*lock, 10);
    }

    #[test]
    fn test_rw_access_in_unwind() {
        let arc = Arc::new(RwLock::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || -> () {
            struct Unwinder {
                i: Arc<RwLock<isize>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    let mut lock = self.i.write();
                    *lock += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.read();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_rwlock_unsized() {
        let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
        {
            let b = &mut *rw.write();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*rw.read(), comp);
    }

    #[test]
    fn test_rwlock_try_write() {
        use std::mem::drop;

        let lock = RwLock::new(0isize);
        let read_guard = lock.read();

        let write_result = lock.try_write();
        match write_result {
            None => (),
            Some(_) => assert!(
                false,
                "try_write should not succeed while read_guard is in scope"
            ),
        }

        drop(read_guard);
    }

    #[test]
    fn test_rw_try_read() {
        let m = RwLock::new(0);
        mem::forget(m.write());
        assert!(m.try_read().is_none());
    }

    #[test]
    fn test_into_inner() {
        let m = RwLock::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = RwLock::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_force_read_decrement() {
        let m = RwLock::new(());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
            m.force_read_decrement();
        }
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
        }
        assert!(m.try_write().is_some());
    }

    #[test]
    fn test_force_write_unlock() {
        let m = RwLock::new(());
        ::std::mem::forget(m.write());
        assert!(m.try_read().is_none());
        unsafe {
            m.force_write_unlock();
        }
        assert!(m.try_read().is_some());
    }

    #[test]
    fn test_upgrade_downgrade() {
        let m = RwLock::new(());
        {
            let _r = m.read();
            let upg = m.try_upgradeable_read().unwrap();
            assert!(m.try_read().is_none());
            assert!(m.try_write().is_none());
            assert!(upg.try_upgrade().is_err());
        }
        {
            let w = m.write();
            assert!(m.try_upgradeable_read().is_none());
            let _r = w.downgrade();
            assert!(m.try_upgradeable_read().is_some());
            assert!(m.try_read().is_some());
            assert!(m.try_write().is_none());
        }
        {
            let _u = m.upgradeable_read();
            assert!(m.try_upgradeable_read().is_none());
        }

        assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
    }
}