1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
//! Building blocks for advanced wrapping functionality.
//!
//! The functions and structs in this module can be used to implement
//! advanced wrapping functionality when the [`wrap`](super::wrap) and
//! [`fill`](super::fill) function don't do what you want.
//!
//! In general, you want to follow these steps when wrapping
//! something:
//!
//! 1. Split your input into [`Fragment`]s. These are abstract blocks
//! of text or content which can be wrapped into lines. See
//! [`WordSeparator`](crate::word_separators::WordSeparator) for
//! how to do this for text.
//!
//! 2. Potentially split your fragments into smaller pieces. This
//! allows you to implement things like hyphenation. If you use the
//! `Word` type, you can use [`WordSplitter`](crate::WordSplitter)
//! enum for this.
//!
//! 3. Potentially break apart fragments that are still too large to
//! fit on a single line. This is implemented in [`break_words`].
//!
//! 4. Finally take your fragments and put them into lines. There are
//! two algorithms for this in the
//! [`wrap_algorithms`](crate::wrap_algorithms) module:
//! [`wrap_optimal_fit`](crate::wrap_algorithms::wrap_optimal_fit)
//! and [`wrap_first_fit`](crate::wrap_algorithms::wrap_first_fit).
//! The former produces better line breaks, the latter is faster.
//!
//! 5. Iterate through the slices returned by the wrapping functions
//! and construct your lines of output.
//!
//! Please [open an issue](https://github.com/mgeisler/textwrap/) if
//! the functionality here is not sufficient or if you have ideas for
//! improving it. We would love to hear from you!
/// The CSI or “Control Sequence Introducer” introduces an ANSI escape
/// sequence. This is typically used for colored text and will be
/// ignored when computing the text width.
const CSI: (char, char) = ('\x1b', '[');
/// The final bytes of an ANSI escape sequence must be in this range.
const ANSI_FINAL_BYTE: std::ops::RangeInclusive<char> = '\x40'..='\x7e';
/// Skip ANSI escape sequences. The `ch` is the current `char`, the
/// `chars` provide the following characters. The `chars` will be
/// modified if `ch` is the start of an ANSI escape sequence.
#[inline]
pub(crate) fn skip_ansi_escape_sequence<I: Iterator<Item = char>>(ch: char, chars: &mut I) -> bool {
if ch == CSI.0 && chars.next() == Some(CSI.1) {
// We have found the start of an ANSI escape code, typically
// used for colored terminal text. We skip until we find a
// "final byte" in the range 0x40–0x7E.
for ch in chars {
if ANSI_FINAL_BYTE.contains(&ch) {
return true;
}
}
}
false
}
#[cfg(feature = "unicode-width")]
#[inline]
fn ch_width(ch: char) -> usize {
unicode_width::UnicodeWidthChar::width(ch).unwrap_or(0)
}
/// First character which [`ch_width`] will classify as double-width.
/// Please see [`display_width`].
#[cfg(not(feature = "unicode-width"))]
const DOUBLE_WIDTH_CUTOFF: char = '\u{1100}';
#[cfg(not(feature = "unicode-width"))]
#[inline]
fn ch_width(ch: char) -> usize {
if ch < DOUBLE_WIDTH_CUTOFF {
1
} else {
2
}
}
/// Compute the display width of `text` while skipping over ANSI
/// escape sequences.
///
/// # Examples
///
/// ```
/// use textwrap::core::display_width;
///
/// assert_eq!(display_width("Café Plain"), 10);
/// assert_eq!(display_width("\u{1b}[31mCafé Rouge\u{1b}[0m"), 10);
/// ```
///
/// **Note:** When the `unicode-width` Cargo feature is disabled, the
/// width of a `char` is determined by a crude approximation which
/// simply counts chars below U+1100 as 1 column wide, and all other
/// characters as 2 columns wide. With the feature enabled, function
/// will correctly deal with [combining characters] in their
/// decomposed form (see [Unicode equivalence]).
///
/// An example of a decomposed character is “é”, which can be
/// decomposed into: “e” followed by a combining acute accent: “◌́”.
/// Without the `unicode-width` Cargo feature, every `char` below
/// U+1100 has a width of 1. This includes the combining accent:
///
/// ```
/// use textwrap::core::display_width;
///
/// assert_eq!(display_width("Cafe Plain"), 10);
/// #[cfg(feature = "unicode-width")]
/// assert_eq!(display_width("Cafe\u{301} Plain"), 10);
/// #[cfg(not(feature = "unicode-width"))]
/// assert_eq!(display_width("Cafe\u{301} Plain"), 11);
/// ```
///
/// ## Emojis and CJK Characters
///
/// Characters such as emojis and [CJK characters] used in the
/// Chinese, Japanese, and Korean langauges are seen as double-width,
/// even if the `unicode-width` feature is disabled:
///
/// ```
/// use textwrap::core::display_width;
///
/// assert_eq!(display_width("😂😭🥺🤣✨😍🙏🥰😊🔥"), 20);
/// assert_eq!(display_width("你好"), 4); // “Nǐ hǎo” or “Hello” in Chinese
/// ```
///
/// # Limitations
///
/// The displayed width of a string cannot always be computed from the
/// string alone. This is because the width depends on the rendering
/// engine used. This is particularly visible with [emoji modifier
/// sequences] where a base emoji is modified with, e.g., skin tone or
/// hair color modifiers. It is up to the rendering engine to detect
/// this and to produce a suitable emoji.
///
/// A simple example is “❤️”, which consists of “❤” (U+2764: Black
/// Heart Symbol) followed by U+FE0F (Variation Selector-16). By
/// itself, “❤” is a black heart, but if you follow it with the
/// variant selector, you may get a wider red heart.
///
/// A more complex example would be “👨🦰” which should depict a man
/// with red hair. Here the computed width is too large — and the
/// width differs depending on the use of the `unicode-width` feature:
///
/// ```
/// use textwrap::core::display_width;
///
/// assert_eq!("👨🦰".chars().collect::<Vec<char>>(), ['\u{1f468}', '\u{200d}', '\u{1f9b0}']);
/// #[cfg(feature = "unicode-width")]
/// assert_eq!(display_width("👨🦰"), 4);
/// #[cfg(not(feature = "unicode-width"))]
/// assert_eq!(display_width("👨🦰"), 6);
/// ```
///
/// This happens because the grapheme consists of three code points:
/// “👨” (U+1F468: Man), Zero Width Joiner (U+200D), and “🦰”
/// (U+1F9B0: Red Hair). You can see them above in the test. With
/// `unicode-width` enabled, the ZWJ is correctly seen as having zero
/// width, without it is counted as a double-width character.
///
/// ## Terminal Support
///
/// Modern browsers typically do a great job at combining characters
/// as shown above, but terminals often struggle more. As an example,
/// Gnome Terminal version 3.38.1, shows “❤️” as a big red heart, but
/// shows "👨🦰" as “👨🦰”.
///
/// [combining characters]: https://en.wikipedia.org/wiki/Combining_character
/// [Unicode equivalence]: https://en.wikipedia.org/wiki/Unicode_equivalence
/// [CJK characters]: https://en.wikipedia.org/wiki/CJK_characters
/// [emoji modifier sequences]: https://unicode.org/emoji/charts/full-emoji-modifiers.html
pub fn display_width(text: &str) -> usize {
let mut chars = text.chars();
let mut width = 0;
while let Some(ch) = chars.next() {
if skip_ansi_escape_sequence(ch, &mut chars) {
continue;
}
width += ch_width(ch);
}
width
}
/// A (text) fragment denotes the unit which we wrap into lines.
///
/// Fragments represent an abstract _word_ plus the _whitespace_
/// following the word. In case the word falls at the end of the line,
/// the whitespace is dropped and a so-called _penalty_ is inserted
/// instead (typically `"-"` if the word was hyphenated).
///
/// For wrapping purposes, the precise content of the word, the
/// whitespace, and the penalty is irrelevant. All we need to know is
/// the displayed width of each part, which this trait provides.
pub trait Fragment: std::fmt::Debug {
/// Displayed width of word represented by this fragment.
fn width(&self) -> f64;
/// Displayed width of the whitespace that must follow the word
/// when the word is not at the end of a line.
fn whitespace_width(&self) -> f64;
/// Displayed width of the penalty that must be inserted if the
/// word falls at the end of a line.
fn penalty_width(&self) -> f64;
}
/// A piece of wrappable text, including any trailing whitespace.
///
/// A `Word` is an example of a [`Fragment`], so it has a width,
/// trailing whitespace, and potentially a penalty item.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Word<'a> {
/// Word content.
pub word: &'a str,
/// Whitespace to insert if the word does not fall at the end of a line.
pub whitespace: &'a str,
/// Penalty string to insert if the word falls at the end of a line.
pub penalty: &'a str,
// Cached width in columns.
pub(crate) width: usize,
}
impl std::ops::Deref for Word<'_> {
type Target = str;
fn deref(&self) -> &Self::Target {
self.word
}
}
impl<'a> Word<'a> {
/// Construct a `Word` from a string.
///
/// A trailing stretch of `' '` is automatically taken to be the
/// whitespace part of the word.
pub fn from(word: &str) -> Word<'_> {
let trimmed = word.trim_end_matches(' ');
Word {
word: trimmed,
width: display_width(trimmed),
whitespace: &word[trimmed.len()..],
penalty: "",
}
}
/// Break this word into smaller words with a width of at most
/// `line_width`. The whitespace and penalty from this `Word` is
/// added to the last piece.
///
/// # Examples
///
/// ```
/// use textwrap::core::Word;
/// assert_eq!(
/// Word::from("Hello! ").break_apart(3).collect::<Vec<_>>(),
/// vec![Word::from("Hel"), Word::from("lo! ")]
/// );
/// ```
pub fn break_apart<'b>(&'b self, line_width: usize) -> impl Iterator<Item = Word<'a>> + 'b {
let mut char_indices = self.word.char_indices();
let mut offset = 0;
let mut width = 0;
std::iter::from_fn(move || {
while let Some((idx, ch)) = char_indices.next() {
if skip_ansi_escape_sequence(ch, &mut char_indices.by_ref().map(|(_, ch)| ch)) {
continue;
}
if width > 0 && width + ch_width(ch) > line_width {
let word = Word {
word: &self.word[offset..idx],
width: width,
whitespace: "",
penalty: "",
};
offset = idx;
width = ch_width(ch);
return Some(word);
}
width += ch_width(ch);
}
if offset < self.word.len() {
let word = Word {
word: &self.word[offset..],
width: width,
whitespace: self.whitespace,
penalty: self.penalty,
};
offset = self.word.len();
return Some(word);
}
None
})
}
}
impl Fragment for Word<'_> {
#[inline]
fn width(&self) -> f64 {
self.width as f64
}
// We assume the whitespace consist of ' ' only. This allows us to
// compute the display width in constant time.
#[inline]
fn whitespace_width(&self) -> f64 {
self.whitespace.len() as f64
}
// We assume the penalty is `""` or `"-"`. This allows us to
// compute the display width in constant time.
#[inline]
fn penalty_width(&self) -> f64 {
self.penalty.len() as f64
}
}
/// Forcibly break words wider than `line_width` into smaller words.
///
/// This simply calls [`Word::break_apart`] on words that are too
/// wide. This means that no extra `'-'` is inserted, the word is
/// simply broken into smaller pieces.
pub fn break_words<'a, I>(words: I, line_width: usize) -> Vec<Word<'a>>
where
I: IntoIterator<Item = Word<'a>>,
{
let mut shortened_words = Vec::new();
for word in words {
if word.width() > line_width as f64 {
shortened_words.extend(word.break_apart(line_width));
} else {
shortened_words.push(word);
}
}
shortened_words
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "unicode-width")]
use unicode_width::UnicodeWidthChar;
#[test]
fn skip_ansi_escape_sequence_works() {
let blue_text = "\u{1b}[34mHello\u{1b}[0m";
let mut chars = blue_text.chars();
let ch = chars.next().unwrap();
assert!(skip_ansi_escape_sequence(ch, &mut chars));
assert_eq!(chars.next(), Some('H'));
}
#[test]
fn emojis_have_correct_width() {
use unic_emoji_char::is_emoji;
// Emojis in the Basic Latin (ASCII) and Latin-1 Supplement
// blocks all have a width of 1 column. This includes
// characters such as '#' and '©'.
for ch in '\u{1}'..'\u{FF}' {
if is_emoji(ch) {
let desc = format!("{:?} U+{:04X}", ch, ch as u32);
#[cfg(feature = "unicode-width")]
assert_eq!(ch.width().unwrap(), 1, "char: {}", desc);
#[cfg(not(feature = "unicode-width"))]
assert_eq!(ch_width(ch), 1, "char: {}", desc);
}
}
// Emojis in the remaining blocks of the Basic Multilingual
// Plane (BMP), in the Supplementary Multilingual Plane (SMP),
// and in the Supplementary Ideographic Plane (SIP), are all 1
// or 2 columns wide when unicode-width is used, and always 2
// columns wide otherwise. This includes all of our favorite
// emojis such as 😊.
for ch in '\u{FF}'..'\u{2FFFF}' {
if is_emoji(ch) {
let desc = format!("{:?} U+{:04X}", ch, ch as u32);
#[cfg(feature = "unicode-width")]
assert!(ch.width().unwrap() <= 2, "char: {}", desc);
#[cfg(not(feature = "unicode-width"))]
assert_eq!(ch_width(ch), 2, "char: {}", desc);
}
}
// The remaining planes contain almost no assigned code points
// and thus also no emojis.
}
#[test]
fn display_width_works() {
assert_eq!("Café Plain".len(), 11); // “é” is two bytes
assert_eq!(display_width("Café Plain"), 10);
assert_eq!(display_width("\u{1b}[31mCafé Rouge\u{1b}[0m"), 10);
}
#[test]
fn display_width_narrow_emojis() {
#[cfg(feature = "unicode-width")]
assert_eq!(display_width("⁉"), 1);
// The ⁉ character is above DOUBLE_WIDTH_CUTOFF.
#[cfg(not(feature = "unicode-width"))]
assert_eq!(display_width("⁉"), 2);
}
#[test]
fn display_width_narrow_emojis_variant_selector() {
#[cfg(feature = "unicode-width")]
assert_eq!(display_width("⁉\u{fe0f}"), 1);
// The variant selector-16 is also counted.
#[cfg(not(feature = "unicode-width"))]
assert_eq!(display_width("⁉\u{fe0f}"), 4);
}
#[test]
fn display_width_emojis() {
assert_eq!(display_width("😂😭🥺🤣✨😍🙏🥰😊🔥"), 20);
}
}