1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
// Copyright 2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Utilities for checking whether a candidate has been approved under a given block.

use bitvec::{order::Lsb0 as BitOrderLsb0, slice::BitSlice};
use polkadot_node_primitives::approval::DelayTranche;
use polkadot_primitives::v2::ValidatorIndex;

use crate::{
	persisted_entries::{ApprovalEntry, CandidateEntry, TrancheEntry},
	time::Tick,
};

/// The required tranches of assignments needed to determine whether a candidate is approved.
#[derive(Debug, PartialEq, Clone)]
pub enum RequiredTranches {
	/// All validators appear to be required, based on tranches already taken and remaining
	/// no-shows.
	All,
	/// More tranches required - We're awaiting more assignments.
	Pending {
		/// The highest considered delay tranche when counting assignments.
		considered: DelayTranche,
		/// The tick at which the next no-show, of the assignments counted, would occur.
		next_no_show: Option<Tick>,
		/// The highest tranche to consider when looking to broadcast own assignment.
		/// This should be considered along with the clock drift to avoid broadcasting
		/// assignments that are before the local time.
		maximum_broadcast: DelayTranche,
		/// The clock drift, in ticks, to apply to the local clock when determining whether
		/// to broadcast an assignment or when to schedule a wakeup. The local clock should be treated
		/// as though it is `clock_drift` ticks earlier.
		clock_drift: Tick,
	},
	/// An exact number of required tranches and a number of no-shows. This indicates that
	/// at least the amount of `needed_approvals` are assigned and additionally all no-shows
	/// are covered.
	Exact {
		/// The tranche to inspect up to.
		needed: DelayTranche,
		/// The amount of missing votes that should be tolerated.
		tolerated_missing: usize,
		/// When the next no-show would be, if any. This is used to schedule the next wakeup in the
		/// event that there are some assignments that don't have corresponding approval votes. If this
		/// is `None`, all assignments have approvals.
		next_no_show: Option<Tick>,
		/// The last tick at which a needed assignment was received.
		last_assignment_tick: Option<Tick>,
	},
}

/// The result of a check.
#[derive(Debug, Clone, Copy)]
pub enum Check {
	/// The candidate is unapproved.
	Unapproved,
	/// The candidate is approved, with the given amount of no-shows,
	/// with the last counted assignment being received at the given
	/// tick.
	Approved(usize, Option<Tick>),
	/// The candidate is approved by one third of all validators.
	ApprovedOneThird,
}

impl Check {
	/// Whether the candidate is approved and all relevant assignments
	/// have at most the given assignment tick.
	pub fn is_approved(&self, max_assignment_tick: Tick) -> bool {
		match *self {
			Check::Unapproved => false,
			Check::Approved(_, last_assignment_tick) =>
				last_assignment_tick.map_or(true, |t| t <= max_assignment_tick),
			Check::ApprovedOneThird => true,
		}
	}

	/// The number of known no-shows in this computation.
	pub fn known_no_shows(&self) -> usize {
		match *self {
			Check::Approved(n, _) => n,
			_ => 0,
		}
	}
}

/// Check the approval of a candidate.
pub fn check_approval(
	candidate: &CandidateEntry,
	approval: &ApprovalEntry,
	required: RequiredTranches,
) -> Check {
	// any set of size f+1 contains at least one honest node. If at least one
	// honest node approves, the candidate should be approved.
	let approvals = candidate.approvals();
	if 3 * approvals.count_ones() > approvals.len() {
		return Check::ApprovedOneThird
	}

	match required {
		RequiredTranches::Pending { .. } => Check::Unapproved,
		RequiredTranches::All => Check::Unapproved,
		RequiredTranches::Exact { needed, tolerated_missing, last_assignment_tick, .. } => {
			// whether all assigned validators up to `needed` less no_shows have approved.
			// e.g. if we had 5 tranches and 1 no-show, we would accept all validators in
			// tranches 0..=5 except for 1 approving. In that example, we also accept all
			// validators in tranches 0..=5 approving, but that would indicate that the
			// RequiredTranches value was incorrectly constructed, so it is not realistic.
			// If there are more missing approvals than there are no-shows, that indicates
			// that there are some assignments which are not yet no-shows, but may become
			// no-shows.

			let mut assigned_mask = approval.assignments_up_to(needed);
			let approvals = candidate.approvals();

			let n_assigned = assigned_mask.count_ones();

			// Filter the amount of assigned validators by those which have approved.
			assigned_mask &= approvals;
			let n_approved = assigned_mask.count_ones();

			// note: the process of computing `required` only chooses `exact` if
			// that will surpass a minimum amount of checks.
			// shouldn't typically go above, since all no-shows are supposed to be covered.
			if n_approved + tolerated_missing >= n_assigned {
				Check::Approved(tolerated_missing, last_assignment_tick)
			} else {
				Check::Unapproved
			}
		},
	}
}

// Determining the amount of tranches required for approval or which assignments are pending
// involves moving through a series of states while looping over the tranches
//
// that we are aware of. First, we perform an initial count of the number of assignments
// until we reach the number of needed assignments for approval. As we progress, we count the
// number of no-shows in each tranche.
//
// Then, if there are any no-shows, we proceed into a series of subsequent states for covering
// no-shows.
//
// We cover each no-show by a non-empty tranche, keeping track of the amount of further
// no-shows encountered along the way. Once all of the no-shows we were previously aware
// of are covered, we then progress to cover the no-shows we encountered while covering those,
// and so on.
#[derive(Debug)]
struct State {
	/// The total number of assignments obtained.
	assignments: usize,
	/// The depth of no-shows we are currently covering.
	depth: usize,
	/// The amount of no-shows that have been covered at the previous or current depths.
	covered: usize,
	/// The amount of assignments that we are attempting to cover at this depth.
	///
	/// At depth 0, these are the initial needed approvals, and at other depths these
	/// are no-shows.
	covering: usize,
	/// The number of uncovered no-shows encountered at this depth. These will be the
	/// `covering` of the next depth.
	uncovered: usize,
	/// The next tick at which a no-show would occur, if any.
	next_no_show: Option<Tick>,
	/// The last tick at which a considered assignment was received.
	last_assignment_tick: Option<Tick>,
}

impl State {
	fn output(
		&self,
		tranche: DelayTranche,
		needed_approvals: usize,
		n_validators: usize,
		no_show_duration: Tick,
	) -> RequiredTranches {
		let covering = if self.depth == 0 { 0 } else { self.covering };
		if self.depth != 0 && self.assignments + covering + self.uncovered >= n_validators {
			return RequiredTranches::All
		}

		// If we have enough assignments and all no-shows are covered, we have reached the number
		// of tranches that we need to have.
		if self.assignments >= needed_approvals && (covering + self.uncovered) == 0 {
			return RequiredTranches::Exact {
				needed: tranche,
				tolerated_missing: self.covered,
				next_no_show: self.next_no_show,
				last_assignment_tick: self.last_assignment_tick,
			}
		}

		// We're pending more assignments and should look at more tranches.
		let clock_drift = self.clock_drift(no_show_duration);
		if self.depth == 0 {
			RequiredTranches::Pending {
				considered: tranche,
				next_no_show: self.next_no_show,
				// during the initial assignment-gathering phase, we want to accept assignments
				// from any tranche. Note that honest validators will still not broadcast their
				// assignment until it is time to do so, regardless of this value.
				maximum_broadcast: DelayTranche::max_value(),
				clock_drift,
			}
		} else {
			RequiredTranches::Pending {
				considered: tranche,
				next_no_show: self.next_no_show,
				maximum_broadcast: tranche + (covering + self.uncovered) as DelayTranche,
				clock_drift,
			}
		}
	}

	fn clock_drift(&self, no_show_duration: Tick) -> Tick {
		self.depth as Tick * no_show_duration
	}

	fn advance(
		&self,
		new_assignments: usize,
		new_no_shows: usize,
		next_no_show: Option<Tick>,
		last_assignment_tick: Option<Tick>,
	) -> State {
		let new_covered = if self.depth == 0 {
			new_assignments
		} else {
			// When covering no-shows, we treat each non-empty tranche as covering 1 assignment,
			// regardless of how many assignments are within the tranche.
			new_assignments.min(1)
		};

		let assignments = self.assignments + new_assignments;
		let covering = self.covering.saturating_sub(new_covered);
		let covered = if self.depth == 0 {
			// If we're at depth 0, we're not actually covering no-shows,
			// so we don't need to count them as such.
			0
		} else {
			self.covered + new_covered
		};
		let uncovered = self.uncovered + new_no_shows;
		let next_no_show = super::min_prefer_some(self.next_no_show, next_no_show);
		let last_assignment_tick = std::cmp::max(self.last_assignment_tick, last_assignment_tick);

		let (depth, covering, uncovered) = if covering == 0 {
			if uncovered == 0 {
				(self.depth, 0, uncovered)
			} else {
				(self.depth + 1, uncovered, 0)
			}
		} else {
			(self.depth, covering, uncovered)
		};

		State {
			assignments,
			depth,
			covered,
			covering,
			uncovered,
			next_no_show,
			last_assignment_tick,
		}
	}
}

/// Constructs an infinite iterator from an array of `TrancheEntry` values. Any missing tranches
/// are filled with empty assignments, as they are needed to compute the approved tranches.
fn filled_tranche_iterator<'a>(
	tranches: &'a [TrancheEntry],
) -> impl Iterator<Item = (DelayTranche, &[(ValidatorIndex, Tick)])> {
	let mut gap_end = None;

	let approval_entries_filled = tranches.iter().flat_map(move |tranche_entry| {
		let tranche = tranche_entry.tranche();
		let assignments = tranche_entry.assignments();

		// The new gap_start immediately follows the prior gap_end, if one exists.
		// Otherwise, on the first pass, the new gap_start is set to the first
		// tranche so that the range below will be empty.
		let gap_start = gap_end.map(|end| end + 1).unwrap_or(tranche);
		gap_end = Some(tranche);

		(gap_start..tranche)
			.map(|i| (i, &[] as &[_]))
			.chain(std::iter::once((tranche, assignments)))
	});

	let pre_end = tranches.first().map(|t| t.tranche());
	let post_start = tranches.last().map_or(0, |t| t.tranche() + 1);

	let pre = pre_end.into_iter().flat_map(|pre_end| (0..pre_end).map(|i| (i, &[] as &[_])));
	let post = (post_start..).map(|i| (i, &[] as &[_]));

	pre.chain(approval_entries_filled).chain(post)
}

/// Computes the number of `no_show` validators in a set of assignments given the relevant approvals
/// and tick parameters. This method also returns the next tick at which a `no_show` will occur
/// amongst the set of validators that have not submitted an approval.
///
/// This also bounds the earliest tick of all assignments to be equal to the
/// block tick for the purposes of the calculation, so no assignment can be treated
/// as being received before the block itself. This is unlikely if not impossible
/// in practice, but can occur during test code.
///
/// If the returned `next_no_show` is not None, there are two possible cases for the value of
/// based on the earliest assignment `tick` of a non-approving, yet-to-be-no-show validator:
///  - if `tick` <= `clock_drift`: the value will always be `clock_drift` + `no_show_duration`.
///  - if `tick` >  `clock_drift`: the value is equal to `tick` + `no_show_duration`.
fn count_no_shows(
	assignments: &[(ValidatorIndex, Tick)],
	approvals: &BitSlice<u8, BitOrderLsb0>,
	clock_drift: Tick,
	block_tick: Tick,
	no_show_duration: Tick,
	drifted_tick_now: Tick,
) -> (usize, Option<u64>) {
	let mut next_no_show = None;
	let no_shows = assignments
		.iter()
		.map(|(v_index, tick)| {
			(v_index, tick.max(&block_tick).saturating_sub(clock_drift) + no_show_duration)
		})
		.filter(|&(v_index, no_show_at)| {
			let has_approved = if let Some(approved) = approvals.get(v_index.0 as usize) {
				*approved
			} else {
				return false
			};

			let is_no_show = !has_approved && no_show_at <= drifted_tick_now;

			if !is_no_show && !has_approved {
				// When doing the comparison above, no_show_at and drifted_tick_now are calculated
				// with the clock_drift removed. The reason for adding back the clock_drift in
				// computing next_no_show is so that the scheduler knows the deadline at which
				// *this node* should observe whether or not the validator is a no show. Recall
				// that when the when drifted_tick_now is computed during that subsequent wake up,
				// the clock drift will be removed again to do the comparison above.
				next_no_show = super::min_prefer_some(next_no_show, Some(no_show_at + clock_drift));
			}

			is_no_show
		})
		.count();

	(no_shows, next_no_show)
}

/// Determine the amount of tranches of assignments needed to determine approval of a candidate.
pub fn tranches_to_approve(
	approval_entry: &ApprovalEntry,
	approvals: &BitSlice<u8, BitOrderLsb0>,
	tranche_now: DelayTranche,
	block_tick: Tick,
	no_show_duration: Tick,
	needed_approvals: usize,
) -> RequiredTranches {
	let tick_now = tranche_now as Tick + block_tick;
	let n_validators = approval_entry.n_validators();

	let initial_state = State {
		assignments: 0,
		depth: 0,
		covered: 0,
		covering: needed_approvals,
		uncovered: 0,
		next_no_show: None,
		last_assignment_tick: None,
	};

	// The `ApprovalEntry` doesn't have any data for empty tranches. We still want to iterate over
	// these empty tranches, so we create an iterator to fill the gaps.
	//
	// This iterator has an infinitely long amount of non-empty tranches appended to the end.
	let tranches_with_gaps_filled = filled_tranche_iterator(approval_entry.tranches());

	tranches_with_gaps_filled
		.scan(Some(initial_state), |state, (tranche, assignments)| {
			// The `Option` here is used for early exit.
			let s = state.take()?;

			let clock_drift = s.clock_drift(no_show_duration);
			let drifted_tick_now = tick_now.saturating_sub(clock_drift);
			let drifted_tranche_now = drifted_tick_now.saturating_sub(block_tick) as DelayTranche;

			// Break the loop once we've taken enough tranches.
			// Note that we always take tranche 0 as `drifted_tranche_now` cannot be less than 0.
			if tranche > drifted_tranche_now {
				return None;
			}

			// Count the number of valid validator assignments.
			let n_assignments = assignments.iter()
				.filter(|(v_index, _)| v_index.0 < n_validators as u32)
				.count();

			// Get the latest tick of valid validator assignments.
			let last_assignment_tick = assignments.iter()
				.map(|(_, t)| *t)
				.max();

			// count no-shows. An assignment is a no-show if there is no corresponding approval vote
			// after a fixed duration.
			//
			// While we count the no-shows, we also determine the next possible no-show we might
			// see within this tranche.
			let (no_shows, next_no_show) = count_no_shows(
				assignments,
				approvals,
				clock_drift,
				block_tick,
				no_show_duration,
				drifted_tick_now,
			);

			let s = s.advance(n_assignments, no_shows, next_no_show, last_assignment_tick);
			let output = s.output(tranche, needed_approvals, n_validators, no_show_duration);

			*state = match output {
				RequiredTranches::Exact { .. } | RequiredTranches::All => {
					// Wipe the state clean so the next iteration of this closure will terminate
					// the iterator. This guarantees that we can call `last` further down to see
					// either a `Finished` or `Pending` result
					None
				}
				RequiredTranches::Pending { .. } => {
					// Pending results are only interesting when they are the last result of the iterator
					// i.e. we never achieve a satisfactory level of assignment.
					Some(s)
				}
			};

			Some(output)
		})
		.last()
		.expect("the underlying iterator is infinite, starts at 0, and never exits early before tranche 1; qed")
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{approval_db, BTreeMap};
	use ::test_helpers::{dummy_candidate_receipt, dummy_hash};
	use bitvec::{bitvec, order::Lsb0 as BitOrderLsb0, vec::BitVec};
	use polkadot_primitives::v2::GroupIndex;

	#[test]
	fn pending_is_not_approved() {
		let candidate = approval_db::v1::CandidateEntry {
			candidate: dummy_candidate_receipt(dummy_hash()),
			session: 0,
			block_assignments: BTreeMap::default(),
			approvals: BitVec::default(),
		}
		.into();

		let approval_entry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: BitVec::default(),
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		assert!(!check_approval(
			&candidate,
			&approval_entry,
			RequiredTranches::Pending {
				considered: 0,
				next_no_show: None,
				maximum_broadcast: 0,
				clock_drift: 0,
			},
		)
		.is_approved(Tick::max_value()));
	}

	#[test]
	fn exact_takes_only_assignments_up_to() {
		let mut candidate: CandidateEntry = approval_db::v1::CandidateEntry {
			candidate: dummy_candidate_receipt(dummy_hash()),
			session: 0,
			block_assignments: BTreeMap::default(),
			approvals: bitvec![u8, BitOrderLsb0; 0; 10],
		}
		.into();

		for i in 0..3 {
			candidate.mark_approval(ValidatorIndex(i));
		}

		let approval_entry = approval_db::v1::ApprovalEntry {
			tranches: vec![
				approval_db::v1::TrancheEntry {
					tranche: 0,
					assignments: (0..2).map(|i| (ValidatorIndex(i), 0.into())).collect(),
				},
				approval_db::v1::TrancheEntry {
					tranche: 1,
					assignments: (2..5).map(|i| (ValidatorIndex(i), 1.into())).collect(),
				},
				approval_db::v1::TrancheEntry {
					tranche: 2,
					assignments: (5..10).map(|i| (ValidatorIndex(i), 0.into())).collect(),
				},
			],
			assignments: bitvec![u8, BitOrderLsb0; 1; 10],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		assert!(check_approval(
			&candidate,
			&approval_entry,
			RequiredTranches::Exact {
				needed: 0,
				tolerated_missing: 0,
				next_no_show: None,
				last_assignment_tick: None
			},
		)
		.is_approved(Tick::max_value()));
		assert!(!check_approval(
			&candidate,
			&approval_entry,
			RequiredTranches::Exact {
				needed: 1,
				tolerated_missing: 0,
				next_no_show: None,
				last_assignment_tick: None
			},
		)
		.is_approved(Tick::max_value()));
		assert!(check_approval(
			&candidate,
			&approval_entry,
			RequiredTranches::Exact {
				needed: 1,
				tolerated_missing: 2,
				next_no_show: None,
				last_assignment_tick: None
			},
		)
		.is_approved(Tick::max_value()));
	}

	#[test]
	fn one_honest_node_always_approves() {
		let mut candidate: CandidateEntry = approval_db::v1::CandidateEntry {
			candidate: dummy_candidate_receipt(dummy_hash()),
			session: 0,
			block_assignments: BTreeMap::default(),
			approvals: bitvec![u8, BitOrderLsb0; 0; 10],
		}
		.into();

		for i in 0..3 {
			candidate.mark_approval(ValidatorIndex(i));
		}

		let approval_entry = approval_db::v1::ApprovalEntry {
			tranches: vec![
				approval_db::v1::TrancheEntry {
					tranche: 0,
					assignments: (0..4).map(|i| (ValidatorIndex(i), 0.into())).collect(),
				},
				approval_db::v1::TrancheEntry {
					tranche: 1,
					assignments: (4..6).map(|i| (ValidatorIndex(i), 1.into())).collect(),
				},
				approval_db::v1::TrancheEntry {
					tranche: 2,
					assignments: (6..10).map(|i| (ValidatorIndex(i), 0.into())).collect(),
				},
			],
			assignments: bitvec![u8, BitOrderLsb0; 1; 10],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		let exact_all = RequiredTranches::Exact {
			needed: 10,
			tolerated_missing: 0,
			next_no_show: None,
			last_assignment_tick: None,
		};

		let pending_all = RequiredTranches::Pending {
			considered: 5,
			next_no_show: None,
			maximum_broadcast: 8,
			clock_drift: 12,
		};

		assert!(!check_approval(&candidate, &approval_entry, RequiredTranches::All,)
			.is_approved(Tick::max_value()));

		assert!(!check_approval(&candidate, &approval_entry, exact_all.clone(),)
			.is_approved(Tick::max_value()));

		assert!(!check_approval(&candidate, &approval_entry, pending_all.clone(),)
			.is_approved(Tick::max_value()));

		// This creates a set of 4/10 approvals, which is always an approval.
		candidate.mark_approval(ValidatorIndex(3));

		assert!(check_approval(&candidate, &approval_entry, RequiredTranches::All,)
			.is_approved(Tick::max_value()));

		assert!(
			check_approval(&candidate, &approval_entry, exact_all,).is_approved(Tick::max_value())
		);

		assert!(check_approval(&candidate, &approval_entry, pending_all,)
			.is_approved(Tick::max_value()));
	}

	#[test]
	fn tranches_to_approve_everyone_present() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; 5],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(0, ValidatorIndex(1), block_tick);

		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick + 1);
		approval_entry.import_assignment(1, ValidatorIndex(3), block_tick + 1);

		approval_entry.import_assignment(2, ValidatorIndex(4), block_tick + 2);

		let approvals = bitvec![u8, BitOrderLsb0; 1; 5];

		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				2,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Exact {
				needed: 1,
				tolerated_missing: 0,
				next_no_show: None,
				last_assignment_tick: Some(21)
			},
		);
	}

	#[test]
	fn tranches_to_approve_not_enough_initial_count() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; 10],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick);

		let approvals = bitvec![u8, BitOrderLsb0; 0; 10];

		let tranche_now = 2;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 2,
				next_no_show: Some(block_tick + no_show_duration),
				maximum_broadcast: DelayTranche::max_value(),
				clock_drift: 0,
			},
		);
	}

	#[test]
	fn tranches_to_approve_no_shows_before_initial_count_treated_same_as_not_initial() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; 10],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(0, ValidatorIndex(1), block_tick);

		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick);

		let mut approvals = bitvec![u8, BitOrderLsb0; 0; 10];
		approvals.set(0, true);
		approvals.set(1, true);

		let tranche_now = no_show_duration as DelayTranche + 1;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 11,
				next_no_show: None,
				maximum_broadcast: DelayTranche::max_value(),
				clock_drift: 0,
			},
		);
	}

	#[test]
	fn tranches_to_approve_cover_no_show_not_enough() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;
		let n_validators = 8;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; n_validators],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(0, ValidatorIndex(1), block_tick);

		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick);
		approval_entry.import_assignment(1, ValidatorIndex(3), block_tick);

		let mut approvals = bitvec![u8, BitOrderLsb0; 0; n_validators];
		approvals.set(0, true);
		approvals.set(1, true);
		// skip 2
		approvals.set(3, true);

		let tranche_now = no_show_duration as DelayTranche + 1;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 1,
				next_no_show: None,
				maximum_broadcast: 2, // tranche 1 + 1 no-show
				clock_drift: 1 * no_show_duration,
			}
		);

		approvals.set(0, false);

		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 1,
				next_no_show: None,
				maximum_broadcast: 3, // tranche 1 + 2 no-shows
				clock_drift: 1 * no_show_duration,
			}
		);
	}

	#[test]
	fn tranches_to_approve_multi_cover_not_enough() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;
		let n_validators = 8;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; n_validators],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(0, ValidatorIndex(1), block_tick);

		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick + 1);
		approval_entry.import_assignment(1, ValidatorIndex(3), block_tick + 1);

		approval_entry.import_assignment(2, ValidatorIndex(4), block_tick + no_show_duration + 2);
		approval_entry.import_assignment(2, ValidatorIndex(5), block_tick + no_show_duration + 2);

		let mut approvals = bitvec![u8, BitOrderLsb0; 0; n_validators];
		approvals.set(0, true);
		approvals.set(1, true);
		// skip 2
		approvals.set(3, true);
		// skip 4
		approvals.set(5, true);

		let tranche_now = 1;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Exact {
				needed: 1,
				tolerated_missing: 0,
				next_no_show: Some(block_tick + no_show_duration + 1),
				last_assignment_tick: Some(block_tick + 1),
			},
		);

		// first no-show covered.
		let tranche_now = no_show_duration as DelayTranche + 2;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Exact {
				needed: 2,
				tolerated_missing: 1,
				next_no_show: Some(block_tick + 2 * no_show_duration + 2),
				last_assignment_tick: Some(block_tick + no_show_duration + 2),
			},
		);

		// another no-show in tranche 2.
		let tranche_now = (no_show_duration * 2) as DelayTranche + 2;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 2,
				next_no_show: None,
				maximum_broadcast: 3, // tranche 2 + 1 uncovered no-show.
				clock_drift: 2 * no_show_duration,
			},
		);
	}

	#[test]
	fn tranches_to_approve_cover_no_show() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 4;
		let n_validators = 8;

		let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
			tranches: Vec::new(),
			assignments: bitvec![u8, BitOrderLsb0; 0; n_validators],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		approval_entry.import_assignment(0, ValidatorIndex(0), block_tick);
		approval_entry.import_assignment(0, ValidatorIndex(1), block_tick);

		approval_entry.import_assignment(1, ValidatorIndex(2), block_tick + 1);
		approval_entry.import_assignment(1, ValidatorIndex(3), block_tick + 1);

		approval_entry.import_assignment(2, ValidatorIndex(4), block_tick + no_show_duration + 2);
		approval_entry.import_assignment(2, ValidatorIndex(5), block_tick + no_show_duration + 2);

		let mut approvals = bitvec![u8, BitOrderLsb0; 0; n_validators];
		approvals.set(0, true);
		approvals.set(1, true);
		// skip 2
		approvals.set(3, true);
		approvals.set(4, true);
		approvals.set(5, true);

		let tranche_now = no_show_duration as DelayTranche + 2;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Exact {
				needed: 2,
				tolerated_missing: 1,
				next_no_show: None,
				last_assignment_tick: Some(block_tick + no_show_duration + 2)
			},
		);

		// Even though tranche 2 has 2 validators, it only covers 1 no-show.
		// to cover a second no-show, we need to take another non-empty tranche.

		approvals.set(0, false);

		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 2,
				next_no_show: None,
				maximum_broadcast: 3,
				clock_drift: no_show_duration,
			},
		);

		approval_entry.import_assignment(3, ValidatorIndex(6), block_tick);
		approvals.set(6, true);

		let tranche_now = no_show_duration as DelayTranche + 3;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Exact {
				needed: 3,
				tolerated_missing: 2,
				next_no_show: None,
				last_assignment_tick: Some(block_tick + no_show_duration + 2),
			},
		);
	}

	#[test]
	fn validator_indexes_out_of_range_are_ignored_in_assignments() {
		let block_tick = 20;
		let no_show_duration = 10;
		let needed_approvals = 3;

		let mut candidate: CandidateEntry = approval_db::v1::CandidateEntry {
			candidate: dummy_candidate_receipt(dummy_hash()),
			session: 0,
			block_assignments: BTreeMap::default(),
			approvals: bitvec![u8, BitOrderLsb0; 0; 3],
		}
		.into();

		for i in 0..3 {
			candidate.mark_approval(ValidatorIndex(i));
		}

		let approval_entry = approval_db::v1::ApprovalEntry {
			tranches: vec![
				// Assignments with invalid validator indexes.
				approval_db::v1::TrancheEntry {
					tranche: 1,
					assignments: (2..5).map(|i| (ValidatorIndex(i), 1.into())).collect(),
				},
			],
			assignments: bitvec![u8, BitOrderLsb0; 1; 3],
			our_assignment: None,
			our_approval_sig: None,
			backing_group: GroupIndex(0),
			approved: false,
		}
		.into();

		let approvals = bitvec![u8, BitOrderLsb0; 0; 3];

		let tranche_now = 10;
		assert_eq!(
			tranches_to_approve(
				&approval_entry,
				&approvals,
				tranche_now,
				block_tick,
				no_show_duration,
				needed_approvals,
			),
			RequiredTranches::Pending {
				considered: 10,
				next_no_show: None,
				maximum_broadcast: DelayTranche::max_value(),
				clock_drift: 0,
			},
		);
	}

	#[test]
	fn filled_tranche_iterator_yields_sequential_tranches() {
		const PREFIX: u32 = 10;

		let test_tranches = vec![
			vec![],                 // empty set
			vec![0],                // zero start
			vec![0, 3],             // zero start with gap
			vec![2],                // non-zero start
			vec![2, 4],             // non-zero start with gap
			vec![0, 1, 2],          // zero start with run and no gap
			vec![2, 3, 4, 8],       // non-zero start with run and gap
			vec![0, 1, 2, 5, 6, 7], // zero start with runs and gap
		];

		for test_tranche in test_tranches {
			let mut approval_entry: ApprovalEntry = approval_db::v1::ApprovalEntry {
				tranches: Vec::new(),
				backing_group: GroupIndex(0),
				our_assignment: None,
				our_approval_sig: None,
				assignments: bitvec![u8, BitOrderLsb0; 0; 3],
				approved: false,
			}
			.into();

			// Populate the requested tranches. The assignemnts aren't inspected in
			// this test.
			for &t in &test_tranche {
				approval_entry.import_assignment(t, ValidatorIndex(0), 0)
			}

			let filled_tranches = filled_tranche_iterator(approval_entry.tranches());

			// Take the first PREFIX entries and map them to their tranche.
			let tranches: Vec<DelayTranche> =
				filled_tranches.take(PREFIX as usize).map(|e| e.0).collect();

			// We expect this sequence to be sequential.
			let exp_tranches: Vec<DelayTranche> = (0..PREFIX).collect();
			assert_eq!(tranches, exp_tranches, "for test tranches: {:?}", test_tranche);
		}
	}

	#[derive(Debug)]
	struct NoShowTest {
		assignments: Vec<(ValidatorIndex, Tick)>,
		approvals: Vec<usize>,
		clock_drift: crate::time::Tick,
		no_show_duration: crate::time::Tick,
		drifted_tick_now: crate::time::Tick,
		exp_no_shows: usize,
		exp_next_no_show: Option<u64>,
	}

	fn test_count_no_shows(test: NoShowTest) {
		let n_validators = 4;
		let block_tick = 20;

		let mut approvals = bitvec![u8, BitOrderLsb0; 0; n_validators];
		for &v_index in &test.approvals {
			approvals.set(v_index, true);
		}

		let (no_shows, next_no_show) = count_no_shows(
			&test.assignments,
			&approvals,
			test.clock_drift,
			block_tick,
			test.no_show_duration,
			test.drifted_tick_now,
		);
		assert_eq!(no_shows, test.exp_no_shows, "for test: {:?}", test);
		assert_eq!(next_no_show, test.exp_next_no_show, "for test {:?}", test);
	}

	#[test]
	fn count_no_shows_empty_assignments() {
		test_count_no_shows(NoShowTest {
			assignments: vec![],
			approvals: vec![],
			clock_drift: 0,
			no_show_duration: 0,
			drifted_tick_now: 0,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_single_validator_is_next_no_show() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 31)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: Some(41),
		})
	}

	#[test]
	fn count_no_shows_single_validator_approval_at_drifted_tick_now() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 20)],
			approvals: vec![1],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_single_validator_approval_after_drifted_tick_now() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 21)],
			approvals: vec![1],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_two_validators_next_no_show_ordered_first() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 31), (ValidatorIndex(2), 32)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: Some(41),
		})
	}

	#[test]
	fn count_no_shows_two_validators_next_no_show_ordered_last() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 32), (ValidatorIndex(2), 31)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: Some(41),
		})
	}

	#[test]
	fn count_no_shows_three_validators_one_almost_late_one_no_show_one_approving() {
		test_count_no_shows(NoShowTest {
			assignments: vec![
				(ValidatorIndex(1), 31),
				(ValidatorIndex(2), 19),
				(ValidatorIndex(3), 19),
			],
			approvals: vec![3],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 1,
			exp_next_no_show: Some(41),
		})
	}

	#[test]
	fn count_no_shows_three_no_show_validators() {
		test_count_no_shows(NoShowTest {
			assignments: vec![
				(ValidatorIndex(1), 20),
				(ValidatorIndex(2), 20),
				(ValidatorIndex(3), 20),
			],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 3,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_three_approving_validators() {
		test_count_no_shows(NoShowTest {
			assignments: vec![
				(ValidatorIndex(1), 20),
				(ValidatorIndex(2), 20),
				(ValidatorIndex(3), 20),
			],
			approvals: vec![1, 2, 3],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_earliest_possible_next_no_show_is_clock_drift_plus_no_show_duration() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 0)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 20,
			drifted_tick_now: 0,
			exp_no_shows: 0,
			exp_next_no_show: Some(40),
		})
	}

	#[test]
	fn count_no_shows_assignment_tick_equal_to_clock_drift_yields_earliest_possible_next_no_show() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1), 10)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 20,
			drifted_tick_now: 0,
			exp_no_shows: 0,
			exp_next_no_show: Some(40),
		})
	}

	#[test]
	fn count_no_shows_validator_index_out_of_approvals_range_is_ignored_as_no_show() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1000), 20)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn count_no_shows_validator_index_out_of_approvals_range_is_ignored_as_next_no_show() {
		test_count_no_shows(NoShowTest {
			assignments: vec![(ValidatorIndex(1000), 21)],
			approvals: vec![],
			clock_drift: 10,
			no_show_duration: 10,
			drifted_tick_now: 20,
			exp_no_shows: 0,
			exp_next_no_show: None,
		})
	}

	#[test]
	fn depth_0_covering_not_treated_as_such() {
		let state = State {
			assignments: 0,
			depth: 0,
			covered: 0,
			covering: 10,
			uncovered: 0,
			next_no_show: None,
			last_assignment_tick: None,
		};

		assert_eq!(
			state.output(0, 10, 10, 20),
			RequiredTranches::Pending {
				considered: 0,
				next_no_show: None,
				maximum_broadcast: DelayTranche::max_value(),
				clock_drift: 0,
			},
		);
	}

	#[test]
	fn depth_0_issued_as_exact_even_when_all() {
		let state = State {
			assignments: 10,
			depth: 0,
			covered: 0,
			covering: 0,
			uncovered: 0,
			next_no_show: None,
			last_assignment_tick: None,
		};

		assert_eq!(
			state.output(0, 10, 10, 20),
			RequiredTranches::Exact {
				needed: 0,
				tolerated_missing: 0,
				next_no_show: None,
				last_assignment_tick: None
			},
		);
	}
}