1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//! Arithmetic mod \\(2\^{252} + 27742317777372353535851937790883648493\\)
//! with five \\(52\\)-bit unsigned limbs.
//!
//! \\(51\\)-bit limbs would cover the desired bit range (\\(253\\)
//! bits), but isn't large enough to reduce a \\(512\\)-bit number with
//! Montgomery multiplication, so \\(52\\) bits is used instead.  To see
//! that this is safe for intermediate results, note that the largest
//! limb in a \\(5\times 5\\) product of \\(52\\)-bit limbs will be
//!
//! ```text
//! (0xfffffffffffff^2) * 5 = 0x4ffffffffffff60000000000005 (107 bits).
//! ```

use core::fmt::Debug;
use core::ops::{Index, IndexMut};

use zeroize::Zeroize;

use constants;

/// The `Scalar52` struct represents an element in
/// \\(\mathbb Z / \ell \mathbb Z\\) as 5 \\(52\\)-bit limbs.
#[derive(Copy,Clone)]
pub struct Scalar52(pub [u64; 5]);

impl Debug for Scalar52 {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "Scalar52: {:?}", &self.0[..])
    }
}

impl Zeroize for Scalar52 {
    fn zeroize(&mut self) {
        self.0.zeroize();
    }
}

impl Index<usize> for Scalar52 {
    type Output = u64;
    fn index(&self, _index: usize) -> &u64 {
        &(self.0[_index])
    }
}

impl IndexMut<usize> for Scalar52 {
    fn index_mut(&mut self, _index: usize) -> &mut u64 {
        &mut (self.0[_index])
    }
}

/// u64 * u64 = u128 multiply helper
#[inline(always)]
fn m(x: u64, y: u64) -> u128 {
    (x as u128) * (y as u128)
}

impl Scalar52 {
    /// Return the zero scalar
    pub fn zero() -> Scalar52 {
        Scalar52([0,0,0,0,0])
    }

    /// Unpack a 32 byte / 256 bit scalar into 5 52-bit limbs.
    pub fn from_bytes(bytes: &[u8; 32]) -> Scalar52 {
        let mut words = [0u64; 4];
        for i in 0..4 {
            for j in 0..8 {
                words[i] |= (bytes[(i * 8) + j] as u64) << (j * 8);
            }
        }

        let mask = (1u64 << 52) - 1;
        let top_mask = (1u64 << 48) - 1;
        let mut s = Scalar52::zero();

        s[ 0] =   words[0]                            & mask;
        s[ 1] = ((words[0] >> 52) | (words[1] << 12)) & mask;
        s[ 2] = ((words[1] >> 40) | (words[2] << 24)) & mask;
        s[ 3] = ((words[2] >> 28) | (words[3] << 36)) & mask;
        s[ 4] =  (words[3] >> 16)                     & top_mask;

        s
    }

    /// Reduce a 64 byte / 512 bit scalar mod l
    pub fn from_bytes_wide(bytes: &[u8; 64]) -> Scalar52 {
        let mut words = [0u64; 8];
        for i in 0..8 {
            for j in 0..8 {
                words[i] |= (bytes[(i * 8) + j] as u64) << (j * 8);
            }
        }

        let mask = (1u64 << 52) - 1;
        let mut lo = Scalar52::zero();
        let mut hi = Scalar52::zero();

        lo[0] =   words[ 0]                             & mask;
        lo[1] = ((words[ 0] >> 52) | (words[ 1] << 12)) & mask;
        lo[2] = ((words[ 1] >> 40) | (words[ 2] << 24)) & mask;
        lo[3] = ((words[ 2] >> 28) | (words[ 3] << 36)) & mask;
        lo[4] = ((words[ 3] >> 16) | (words[ 4] << 48)) & mask;
        hi[0] =  (words[ 4] >>  4)                      & mask;
        hi[1] = ((words[ 4] >> 56) | (words[ 5] <<  8)) & mask;
        hi[2] = ((words[ 5] >> 44) | (words[ 6] << 20)) & mask;
        hi[3] = ((words[ 6] >> 32) | (words[ 7] << 32)) & mask;
        hi[4] =   words[ 7] >> 20                             ;

        lo = Scalar52::montgomery_mul(&lo, &constants::R);  // (lo * R) / R = lo
        hi = Scalar52::montgomery_mul(&hi, &constants::RR); // (hi * R^2) / R = hi * R

        Scalar52::add(&hi, &lo)
    }

    /// Pack the limbs of this `Scalar52` into 32 bytes
    pub fn to_bytes(&self) -> [u8; 32] {
        let mut s = [0u8; 32];

        s[0]  =  (self.0[ 0] >>  0)                      as u8;
        s[1]  =  (self.0[ 0] >>  8)                      as u8;
        s[2]  =  (self.0[ 0] >> 16)                      as u8;
        s[3]  =  (self.0[ 0] >> 24)                      as u8;
        s[4]  =  (self.0[ 0] >> 32)                      as u8;
        s[5]  =  (self.0[ 0] >> 40)                      as u8;
        s[6]  = ((self.0[ 0] >> 48) | (self.0[ 1] << 4)) as u8;
        s[7]  =  (self.0[ 1] >>  4)                      as u8;
        s[8]  =  (self.0[ 1] >> 12)                      as u8;
        s[9]  =  (self.0[ 1] >> 20)                      as u8;
        s[10] =  (self.0[ 1] >> 28)                      as u8;
        s[11] =  (self.0[ 1] >> 36)                      as u8;
        s[12] =  (self.0[ 1] >> 44)                      as u8;
        s[13] =  (self.0[ 2] >>  0)                      as u8;
        s[14] =  (self.0[ 2] >>  8)                      as u8;
        s[15] =  (self.0[ 2] >> 16)                      as u8;
        s[16] =  (self.0[ 2] >> 24)                      as u8;
        s[17] =  (self.0[ 2] >> 32)                      as u8;
        s[18] =  (self.0[ 2] >> 40)                      as u8;
        s[19] = ((self.0[ 2] >> 48) | (self.0[ 3] << 4)) as u8;
        s[20] =  (self.0[ 3] >>  4)                      as u8;
        s[21] =  (self.0[ 3] >> 12)                      as u8;
        s[22] =  (self.0[ 3] >> 20)                      as u8;
        s[23] =  (self.0[ 3] >> 28)                      as u8;
        s[24] =  (self.0[ 3] >> 36)                      as u8;
        s[25] =  (self.0[ 3] >> 44)                      as u8;
        s[26] =  (self.0[ 4] >>  0)                      as u8;
        s[27] =  (self.0[ 4] >>  8)                      as u8;
        s[28] =  (self.0[ 4] >> 16)                      as u8;
        s[29] =  (self.0[ 4] >> 24)                      as u8;
        s[30] =  (self.0[ 4] >> 32)                      as u8;
        s[31] =  (self.0[ 4] >> 40)                      as u8;

        s
    }

    /// Compute `a + b` (mod l)
    pub fn add(a: &Scalar52, b: &Scalar52) -> Scalar52 {
        let mut sum = Scalar52::zero();
        let mask = (1u64 << 52) - 1;

        // a + b
        let mut carry: u64 = 0;
        for i in 0..5 {
            carry = a[i] + b[i] + (carry >> 52);
            sum[i] = carry & mask;
        }

        // subtract l if the sum is >= l
        Scalar52::sub(&sum, &constants::L)
    }

    /// Compute `a - b` (mod l)
    pub fn sub(a: &Scalar52, b: &Scalar52) -> Scalar52 {
        let mut difference = Scalar52::zero();
        let mask = (1u64 << 52) - 1;

        // a - b
        let mut borrow: u64 = 0;
        for i in 0..5 {
            borrow = a[i].wrapping_sub(b[i] + (borrow >> 63));
            difference[i] = borrow & mask;
        }

        // conditionally add l if the difference is negative
        let underflow_mask = ((borrow >> 63) ^ 1).wrapping_sub(1);
        let mut carry: u64 = 0;
        for i in 0..5 {
            carry = (carry >> 52) + difference[i] + (constants::L[i] & underflow_mask);
            difference[i] = carry & mask;
        }

        difference
    }

    /// Compute `a * b`
    #[inline(always)]
    pub (crate) fn mul_internal(a: &Scalar52, b: &Scalar52) -> [u128; 9] {
        let mut z = [0u128; 9];

        z[0] = m(a[0],b[0]);
        z[1] = m(a[0],b[1]) + m(a[1],b[0]);
        z[2] = m(a[0],b[2]) + m(a[1],b[1]) + m(a[2],b[0]);
        z[3] = m(a[0],b[3]) + m(a[1],b[2]) + m(a[2],b[1]) + m(a[3],b[0]);
        z[4] = m(a[0],b[4]) + m(a[1],b[3]) + m(a[2],b[2]) + m(a[3],b[1]) + m(a[4],b[0]);
        z[5] =                m(a[1],b[4]) + m(a[2],b[3]) + m(a[3],b[2]) + m(a[4],b[1]);
        z[6] =                               m(a[2],b[4]) + m(a[3],b[3]) + m(a[4],b[2]);
        z[7] =                                              m(a[3],b[4]) + m(a[4],b[3]);
        z[8] =                                                             m(a[4],b[4]);

        z
    }

    /// Compute `a^2`
    #[inline(always)]
    fn square_internal(a: &Scalar52) -> [u128; 9] {
        let aa = [
            a[0]*2,
            a[1]*2,
            a[2]*2,
            a[3]*2,
        ];

        [
            m( a[0],a[0]),
            m(aa[0],a[1]),
            m(aa[0],a[2]) + m( a[1],a[1]),
            m(aa[0],a[3]) + m(aa[1],a[2]),
            m(aa[0],a[4]) + m(aa[1],a[3]) + m( a[2],a[2]),
                            m(aa[1],a[4]) + m(aa[2],a[3]),
                                            m(aa[2],a[4]) + m( a[3],a[3]),
                                                            m(aa[3],a[4]),
                                                                            m(a[4],a[4])
        ]
    }

    /// Compute `limbs/R` (mod l), where R is the Montgomery modulus 2^260
    #[inline(always)]
    pub (crate) fn montgomery_reduce(limbs: &[u128; 9]) -> Scalar52 {

        #[inline(always)]
        fn part1(sum: u128) -> (u128, u64) {
            let p = (sum as u64).wrapping_mul(constants::LFACTOR) & ((1u64 << 52) - 1);
            ((sum + m(p,constants::L[0])) >> 52, p)
        }

        #[inline(always)]
        fn part2(sum: u128) -> (u128, u64) {
            let w = (sum as u64) & ((1u64 << 52) - 1);
            (sum >> 52, w)
        }

        // note: l[3] is zero, so its multiples can be skipped
        let l = &constants::L;

        // the first half computes the Montgomery adjustment factor n, and begins adding n*l to make limbs divisible by R
        let (carry, n0) = part1(        limbs[0]);
        let (carry, n1) = part1(carry + limbs[1] + m(n0,l[1]));
        let (carry, n2) = part1(carry + limbs[2] + m(n0,l[2]) + m(n1,l[1]));
        let (carry, n3) = part1(carry + limbs[3]              + m(n1,l[2]) + m(n2,l[1]));
        let (carry, n4) = part1(carry + limbs[4] + m(n0,l[4])              + m(n2,l[2]) + m(n3,l[1]));

        // limbs is divisible by R now, so we can divide by R by simply storing the upper half as the result
        let (carry, r0) = part2(carry + limbs[5]              + m(n1,l[4])              + m(n3,l[2]) + m(n4,l[1]));
        let (carry, r1) = part2(carry + limbs[6]                           + m(n2,l[4])              + m(n4,l[2]));
        let (carry, r2) = part2(carry + limbs[7]                                        + m(n3,l[4])             );
        let (carry, r3) = part2(carry + limbs[8]                                                     + m(n4,l[4]));
        let         r4 = carry as u64;

        // result may be >= l, so attempt to subtract l
        Scalar52::sub(&Scalar52([r0,r1,r2,r3,r4]), l)
    }

    /// Compute `a * b` (mod l)
    #[inline(never)]
    pub fn mul(a: &Scalar52, b: &Scalar52) -> Scalar52 {
        let ab = Scalar52::montgomery_reduce(&Scalar52::mul_internal(a, b));
        Scalar52::montgomery_reduce(&Scalar52::mul_internal(&ab, &constants::RR))
    }

    /// Compute `a^2` (mod l)
    #[inline(never)]
    #[allow(dead_code)] // XXX we don't expose square() via the Scalar API
    pub fn square(&self) -> Scalar52 {
        let aa = Scalar52::montgomery_reduce(&Scalar52::square_internal(self));
        Scalar52::montgomery_reduce(&Scalar52::mul_internal(&aa, &constants::RR))
    }

    /// Compute `(a * b) / R` (mod l), where R is the Montgomery modulus 2^260
    #[inline(never)]
    pub fn montgomery_mul(a: &Scalar52, b: &Scalar52) -> Scalar52 {
        Scalar52::montgomery_reduce(&Scalar52::mul_internal(a, b))
    }

    /// Compute `(a^2) / R` (mod l) in Montgomery form, where R is the Montgomery modulus 2^260
    #[inline(never)]
    pub fn montgomery_square(&self) -> Scalar52 {
        Scalar52::montgomery_reduce(&Scalar52::square_internal(self))
    }

    /// Puts a Scalar52 in to Montgomery form, i.e. computes `a*R (mod l)`
    #[inline(never)]
    pub fn to_montgomery(&self) -> Scalar52 {
        Scalar52::montgomery_mul(self, &constants::RR)
    }

    /// Takes a Scalar52 out of Montgomery form, i.e. computes `a/R (mod l)`
    #[inline(never)]
    pub fn from_montgomery(&self) -> Scalar52 {
        let mut limbs = [0u128; 9];
        for i in 0..5 {
            limbs[i] = self[i] as u128;
        }
        Scalar52::montgomery_reduce(&limbs)
    }
}


#[cfg(test)]
mod test {
    use super::*;

    /// Note: x is 2^253-1 which is slightly larger than the largest scalar produced by
    /// this implementation (l-1), and should show there are no overflows for valid scalars
    ///
    /// x = 14474011154664524427946373126085988481658748083205070504932198000989141204991
    /// x = 7237005577332262213973186563042994240801631723825162898930247062703686954002 mod l
    /// x = 3057150787695215392275360544382990118917283750546154083604586903220563173085*R mod l in Montgomery form
    pub static X: Scalar52 = Scalar52(
        [0x000fffffffffffff, 0x000fffffffffffff, 0x000fffffffffffff, 0x000fffffffffffff,
         0x00001fffffffffff]);

    /// x^2 = 3078544782642840487852506753550082162405942681916160040940637093560259278169 mod l
    pub static XX: Scalar52 = Scalar52(
        [0x0001668020217559, 0x000531640ffd0ec0, 0x00085fd6f9f38a31, 0x000c268f73bb1cf4,
         0x000006ce65046df0]);

    /// x^2 = 4413052134910308800482070043710297189082115023966588301924965890668401540959*R mod l in Montgomery form
    pub static XX_MONT: Scalar52 = Scalar52(
        [0x000c754eea569a5c, 0x00063b6ed36cb215, 0x0008ffa36bf25886, 0x000e9183614e7543,
         0x0000061db6c6f26f]);

    /// y = 6145104759870991071742105800796537629880401874866217824609283457819451087098
    pub static Y: Scalar52 = Scalar52(
        [0x000b75071e1458fa, 0x000bf9d75e1ecdac, 0x000433d2baf0672b, 0x0005fffcc11fad13,
         0x00000d96018bb825]);

    /// x*y = 36752150652102274958925982391442301741 mod l
    pub static XY: Scalar52 = Scalar52(
        [0x000ee6d76ba7632d, 0x000ed50d71d84e02, 0x00000000001ba634, 0x0000000000000000,
         0x0000000000000000]);

    /// x*y = 658448296334113745583381664921721413881518248721417041768778176391714104386*R mod l in Montgomery form
    pub static XY_MONT: Scalar52 = Scalar52(
        [0x0006d52bf200cfd5, 0x00033fb1d7021570, 0x000f201bc07139d8, 0x0001267e3e49169e,
         0x000007b839c00268]);

    /// a = 2351415481556538453565687241199399922945659411799870114962672658845158063753
    pub static A: Scalar52 = Scalar52(
        [0x0005236c07b3be89, 0x0001bc3d2a67c0c4, 0x000a4aa782aae3ee, 0x0006b3f6e4fec4c4,
         0x00000532da9fab8c]);

    /// b = 4885590095775723760407499321843594317911456947580037491039278279440296187236
    pub static B: Scalar52 = Scalar52(
        [0x000d3fae55421564, 0x000c2df24f65a4bc, 0x0005b5587d69fb0b, 0x00094c091b013b3b,
         0x00000acd25605473]);

    /// a+b = 0
    /// a-b = 4702830963113076907131374482398799845891318823599740229925345317690316127506
    pub static AB: Scalar52 = Scalar52(
        [0x000a46d80f677d12, 0x0003787a54cf8188, 0x0004954f0555c7dc, 0x000d67edc9fd8989,
         0x00000a65b53f5718]);

    // c = (2^512 - 1) % l = 1627715501170711445284395025044413883736156588369414752970002579683115011840
    pub static C: Scalar52 = Scalar52(
        [0x000611e3449c0f00, 0x000a768859347a40, 0x0007f5be65d00e1b, 0x0009a3dceec73d21,
         0x00000399411b7c30]);

    #[test]
    fn mul_max() {
        let res = Scalar52::mul(&X, &X);
        for i in 0..5 {
            assert!(res[i] == XX[i]);
        }
    }

    #[test]
    fn square_max() {
        let res = X.square();
        for i in 0..5 {
            assert!(res[i] == XX[i]);
        }
    }

    #[test]
    fn montgomery_mul_max() {
        let res = Scalar52::montgomery_mul(&X, &X);
        for i in 0..5 {
            assert!(res[i] == XX_MONT[i]);
        }
    }

    #[test]
    fn montgomery_square_max() {
        let res = X.montgomery_square();
        for i in 0..5 {
            assert!(res[i] == XX_MONT[i]);
        }
    }

    #[test]
    fn mul() {
        let res = Scalar52::mul(&X, &Y);
        for i in 0..5 {
            assert!(res[i] == XY[i]);
        }
    }

    #[test]
    fn montgomery_mul() {
        let res = Scalar52::montgomery_mul(&X, &Y);
        for i in 0..5 {
            assert!(res[i] == XY_MONT[i]);
        }
    }

    #[test]
    fn add() {
        let res = Scalar52::add(&A, &B);
        let zero = Scalar52::zero();
        for i in 0..5 {
            assert!(res[i] == zero[i]);
        }
    }

    #[test]
    fn sub() {
        let res = Scalar52::sub(&A, &B);
        for i in 0..5 {
            assert!(res[i] == AB[i]);
        }
    }

    #[test]
    fn from_bytes_wide() {
        let bignum = [255u8; 64]; // 2^512 - 1
        let reduced = Scalar52::from_bytes_wide(&bignum);
        for i in 0..5 {
            assert!(reduced[i] == C[i]);
        }
    }
}