1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
use crate::builder::LinkOptions;
use crate::debug::{DwarfSectionRelocTarget, ModuleMemoryOffset};
use crate::func_environ::{get_func_name, FuncEnvironment};
use crate::obj::ModuleTextBuilder;
use crate::{
    blank_sig, func_signature, indirect_signature, value_type, wasmtime_call_conv,
    CompiledFunction, CompiledFunctions, FunctionAddressMap, Relocation, RelocationTarget,
};
use anyhow::{Context as _, Result};
use cranelift_codegen::ir::{self, ExternalName, InstBuilder, MemFlags, Value};
use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::Context;
use cranelift_codegen::{settings, MachReloc, MachTrap};
use cranelift_codegen::{MachSrcLoc, MachStackMap};
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_frontend::FunctionBuilder;
use cranelift_wasm::{
    DefinedFuncIndex, DefinedMemoryIndex, FuncIndex, FuncTranslator, MemoryIndex, SignatureIndex,
    WasmFuncType,
};
use object::write::{Object, StandardSegment, SymbolId};
use object::{RelocationEncoding, RelocationKind, SectionKind};
use std::any::Any;
use std::cmp;
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::mem;
use std::sync::Mutex;
use wasmtime_environ::{
    AddressMapSection, CompileError, FilePos, FlagValue, FunctionBodyData, FunctionInfo,
    InstructionAddressMap, Module, ModuleTranslation, ModuleTypes, StackMapInformation, Trampoline,
    TrapCode, TrapEncodingBuilder, TrapInformation, Tunables, VMOffsets,
};

#[cfg(feature = "component-model")]
mod component;

struct CompilerContext {
    func_translator: FuncTranslator,
    codegen_context: Context,
}

impl Default for CompilerContext {
    fn default() -> Self {
        Self {
            func_translator: FuncTranslator::new(),
            codegen_context: Context::new(),
        }
    }
}

/// A compiler that compiles a WebAssembly module with Compiler, translating
/// the Wasm to Compiler IR, optimizing it and then translating to assembly.
pub(crate) struct Compiler {
    contexts: Mutex<Vec<CompilerContext>>,
    isa: Box<dyn TargetIsa>,
    linkopts: LinkOptions,
}

impl Compiler {
    pub(crate) fn new(isa: Box<dyn TargetIsa>, linkopts: LinkOptions) -> Compiler {
        Compiler {
            contexts: Default::default(),
            isa,
            linkopts,
        }
    }

    fn take_context(&self) -> CompilerContext {
        let candidate = self.contexts.lock().unwrap().pop();
        candidate
            .map(|mut ctx| {
                ctx.codegen_context.clear();
                ctx
            })
            .unwrap_or_else(Default::default)
    }

    fn save_context(&self, ctx: CompilerContext) {
        self.contexts.lock().unwrap().push(ctx);
    }

    fn get_function_address_map(
        &self,
        context: &Context,
        data: &FunctionBodyData<'_>,
        body_len: u32,
        tunables: &Tunables,
    ) -> FunctionAddressMap {
        // Generate artificial srcloc for function start/end to identify boundary
        // within module.
        let data = data.body.get_binary_reader();
        let offset = data.original_position();
        let len = data.bytes_remaining();
        assert!((offset + len) <= u32::max_value() as usize);
        let start_srcloc = FilePos::new(offset as u32);
        let end_srcloc = FilePos::new((offset + len) as u32);

        // New-style backend: we have a `MachCompileResult` that will give us `MachSrcLoc` mapping
        // tuples.
        let instructions = if tunables.generate_address_map {
            collect_address_maps(
                body_len,
                context
                    .mach_compile_result
                    .as_ref()
                    .unwrap()
                    .buffer
                    .get_srclocs_sorted()
                    .into_iter()
                    .map(|&MachSrcLoc { start, end, loc }| (loc, start, (end - start))),
            )
        } else {
            Vec::new()
        };

        FunctionAddressMap {
            instructions: instructions.into(),
            start_srcloc,
            end_srcloc,
            body_offset: 0,
            body_len,
        }
    }
}

impl wasmtime_environ::Compiler for Compiler {
    fn compile_function(
        &self,
        translation: &ModuleTranslation<'_>,
        func_index: DefinedFuncIndex,
        mut input: FunctionBodyData<'_>,
        tunables: &Tunables,
        types: &ModuleTypes,
    ) -> Result<Box<dyn Any + Send>, CompileError> {
        let isa = &*self.isa;
        let module = &translation.module;
        let func_index = module.func_index(func_index);

        let CompilerContext {
            mut func_translator,
            codegen_context: mut context,
        } = self.take_context();

        context.func.name = get_func_name(func_index);
        context.func.signature = func_signature(isa, translation, types, func_index);
        if tunables.generate_native_debuginfo {
            context.func.collect_debug_info();
        }

        let mut func_env = FuncEnvironment::new(isa, translation, types, tunables);

        // We use these as constant offsets below in
        // `stack_limit_from_arguments`, so assert their values here. This
        // allows the closure below to get coerced to a function pointer, as
        // needed by `ir::Function`.
        //
        // Otherwise our stack limit is specially calculated from the vmctx
        // argument, where we need to load the `*const VMRuntimeLimits`
        // pointer, and then from that pointer we need to load the stack
        // limit itself. Note that manual register allocation is needed here
        // too due to how late in the process this codegen happens.
        //
        // For more information about interrupts and stack checks, see the
        // top of this file.
        let vmctx = context
            .func
            .create_global_value(ir::GlobalValueData::VMContext);
        let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
            base: vmctx,
            offset: i32::try_from(func_env.offsets.vmctx_runtime_limits())
                .unwrap()
                .into(),
            global_type: isa.pointer_type(),
            readonly: true,
        });
        let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
            base: interrupts_ptr,
            offset: i32::try_from(func_env.offsets.vmruntime_limits_stack_limit())
                .unwrap()
                .into(),
            global_type: isa.pointer_type(),
            readonly: false,
        });
        context.func.stack_limit = Some(stack_limit);
        func_translator.translate_body(
            &mut input.validator,
            input.body.clone(),
            &mut context.func,
            &mut func_env,
        )?;

        let mut code_buf: Vec<u8> = Vec::new();
        context
            .compile_and_emit(isa, &mut code_buf)
            .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;

        let result = context.mach_compile_result.as_ref().unwrap();

        let func_relocs = result
            .buffer
            .relocs()
            .into_iter()
            .map(mach_reloc_to_reloc)
            .collect::<Vec<_>>();

        let traps = result
            .buffer
            .traps()
            .into_iter()
            .map(mach_trap_to_trap)
            .collect::<Vec<_>>();

        let stack_maps = mach_stack_maps_to_stack_maps(result.buffer.stack_maps());

        let unwind_info = if isa.flags().unwind_info() {
            context
                .create_unwind_info(isa)
                .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
        } else {
            None
        };

        let address_transform =
            self.get_function_address_map(&context, &input, code_buf.len() as u32, tunables);

        let ranges = if tunables.generate_native_debuginfo {
            Some(
                context
                    .mach_compile_result
                    .as_ref()
                    .unwrap()
                    .value_labels_ranges
                    .clone(),
            )
        } else {
            None
        };

        let timing = cranelift_codegen::timing::take_current();
        log::debug!("{:?} translated in {:?}", func_index, timing.total());
        log::trace!("{:?} timing info\n{}", func_index, timing);

        let length = u32::try_from(code_buf.len()).unwrap();

        let stack_slots = std::mem::take(&mut context.func.stack_slots);

        self.save_context(CompilerContext {
            func_translator,
            codegen_context: context,
        });

        Ok(Box::new(CompiledFunction {
            body: code_buf,
            relocations: func_relocs,
            value_labels_ranges: ranges.unwrap_or(Default::default()),
            stack_slots,
            unwind_info,
            traps,
            info: FunctionInfo {
                start_srcloc: address_transform.start_srcloc,
                stack_maps,
                start: 0,
                length,
            },
            address_map: address_transform,
        }))
    }

    fn emit_obj(
        &self,
        translation: &ModuleTranslation,
        types: &ModuleTypes,
        funcs: PrimaryMap<DefinedFuncIndex, Box<dyn Any + Send>>,
        tunables: &Tunables,
        obj: &mut Object<'static>,
    ) -> Result<(PrimaryMap<DefinedFuncIndex, FunctionInfo>, Vec<Trampoline>)> {
        let funcs: CompiledFunctions = funcs
            .into_iter()
            .map(|(_i, f)| *f.downcast().unwrap())
            .collect();

        let mut builder = ModuleTextBuilder::new(obj, &translation.module, &*self.isa);
        if self.linkopts.force_jump_veneers {
            builder.force_veneers();
        }
        let mut addrs = AddressMapSection::default();
        let mut traps = TrapEncodingBuilder::default();
        let compiled_trampolines = translation
            .exported_signatures
            .iter()
            .map(|i| self.host_to_wasm_trampoline(&types[*i]))
            .collect::<Result<Vec<_>, _>>()?;

        let mut func_starts = Vec::with_capacity(funcs.len());
        for (i, func) in funcs.iter() {
            let range = builder.func(i, func);
            if tunables.generate_address_map {
                addrs.push(range.clone(), &func.address_map.instructions);
            }
            traps.push(range.clone(), &func.traps);
            func_starts.push(range.start);
            builder.append_padding(self.linkopts.padding_between_functions);
        }

        // Build trampolines for every signature that can be used by this module.
        let mut trampolines = Vec::with_capacity(translation.exported_signatures.len());
        for (i, func) in translation
            .exported_signatures
            .iter()
            .zip(&compiled_trampolines)
        {
            trampolines.push(builder.trampoline(*i, &func));
        }

        let symbols = builder.finish()?;

        self.append_dwarf(obj, translation, &funcs, tunables, &symbols)?;
        if tunables.generate_address_map {
            addrs.append_to(obj);
        }
        traps.append_to(obj);

        Ok((
            funcs
                .into_iter()
                .zip(func_starts)
                .map(|((_, mut f), start)| {
                    f.info.start = start;
                    f.info
                })
                .collect(),
            trampolines,
        ))
    }

    fn emit_trampoline_obj(
        &self,
        ty: &WasmFuncType,
        host_fn: usize,
        obj: &mut Object<'static>,
    ) -> Result<(Trampoline, Trampoline)> {
        let host_to_wasm = self.host_to_wasm_trampoline(ty)?;
        let wasm_to_host = self.wasm_to_host_trampoline(ty, host_fn)?;
        let module = Module::new();
        let mut builder = ModuleTextBuilder::new(obj, &module, &*self.isa);
        let a = builder.trampoline(SignatureIndex::new(0), &host_to_wasm);
        let b = builder.trampoline(SignatureIndex::new(1), &wasm_to_host);
        builder.finish()?;
        Ok((a, b))
    }

    fn triple(&self) -> &target_lexicon::Triple {
        self.isa.triple()
    }

    fn page_size_align(&self) -> u64 {
        self.isa.code_section_alignment()
    }

    fn flags(&self) -> BTreeMap<String, FlagValue> {
        self.isa
            .flags()
            .iter()
            .map(|val| (val.name.to_string(), to_flag_value(&val)))
            .collect()
    }

    fn isa_flags(&self) -> BTreeMap<String, FlagValue> {
        self.isa
            .isa_flags()
            .iter()
            .map(|val| (val.name.to_string(), to_flag_value(val)))
            .collect()
    }

    #[cfg(feature = "component-model")]
    fn component_compiler(&self) -> &dyn wasmtime_environ::component::ComponentCompiler {
        self
    }
}

fn to_flag_value(v: &settings::Value) -> FlagValue {
    match v.kind() {
        settings::SettingKind::Enum => FlagValue::Enum(v.as_enum().unwrap().into()),
        settings::SettingKind::Num => FlagValue::Num(v.as_num().unwrap()),
        settings::SettingKind::Bool => FlagValue::Bool(v.as_bool().unwrap()),
        settings::SettingKind::Preset => unreachable!(),
    }
}

impl Compiler {
    fn host_to_wasm_trampoline(&self, ty: &WasmFuncType) -> Result<CompiledFunction, CompileError> {
        let isa = &*self.isa;
        let value_size = mem::size_of::<u128>();
        let pointer_type = isa.pointer_type();

        // The wasm signature we're calling in this trampoline has the actual
        // ABI of the function signature described by `ty`
        let wasm_signature = indirect_signature(isa, ty);

        // The host signature has the `VMTrampoline` signature where the ABI is
        // fixed.
        let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
        host_signature.params.push(ir::AbiParam::new(pointer_type));
        host_signature.params.push(ir::AbiParam::new(pointer_type));

        let CompilerContext {
            mut func_translator,
            codegen_context: mut context,
        } = self.take_context();

        context.func = ir::Function::with_name_signature(ExternalName::user(0, 0), host_signature);

        // This trampoline will load all the parameters from the `values_vec`
        // that is passed in and then call the real function (also passed
        // indirectly) with the specified ABI.
        //
        // All the results are then stored into the same `values_vec`.
        let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
        let block0 = builder.create_block();

        builder.append_block_params_for_function_params(block0);
        builder.switch_to_block(block0);
        builder.seal_block(block0);

        let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
            let params = builder.func.dfg.block_params(block0);
            (params[0], params[1], params[2], params[3])
        };

        // Load the argument values out of `values_vec`.
        let mut mflags = ir::MemFlags::trusted();
        mflags.set_endianness(ir::Endianness::Little);
        let callee_args = wasm_signature
            .params
            .iter()
            .enumerate()
            .map(|(i, r)| {
                match i {
                    0 => vmctx_ptr_val,
                    1 => caller_vmctx_ptr_val,
                    _ =>
                    // i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
                    {
                        builder.ins().load(
                            r.value_type,
                            mflags,
                            values_vec_ptr_val,
                            ((i - 2) * value_size) as i32,
                        )
                    }
                }
            })
            .collect::<Vec<_>>();

        // Call the indirect function pointer we were given
        let new_sig = builder.import_signature(wasm_signature);
        let call = builder
            .ins()
            .call_indirect(new_sig, callee_value, &callee_args);
        let results = builder.func.dfg.inst_results(call).to_vec();

        // Store the return values into `values_vec`.
        for (i, r) in results.iter().enumerate() {
            builder
                .ins()
                .store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
        }
        builder.ins().return_(&[]);
        builder.finalize();

        let func = self.finish_trampoline(&mut context, isa)?;
        self.save_context(CompilerContext {
            func_translator,
            codegen_context: context,
        });
        Ok(func)
    }

    /// Creates a trampoline for WebAssembly calling into the host where all the
    /// arguments are spilled to the stack and results are loaded from the
    /// stack.
    ///
    /// This style of trampoline is currently only used with the
    /// `Func::new`-style created functions in the Wasmtime embedding API. The
    /// generated trampoline has a function signature appropriate to the `ty`
    /// specified (e.g. a System-V ABI) and will call a `host_fn` that has a
    /// type signature of:
    ///
    /// ```ignore
    /// extern "C" fn(*mut VMContext, *mut VMContext, *mut ValRaw, usize)
    /// ```
    ///
    /// where the first two arguments are forwarded from the trampoline
    /// generated here itself, and the second two arguments are a pointer/length
    /// into stack-space of this trampoline with storage for both the arguments
    /// to the function and the results.
    ///
    /// Note that `host_fn` is an immediate which is an actual function pointer
    /// in this process. As such this compiled trampoline is not suitable for
    /// serialization.
    fn wasm_to_host_trampoline(
        &self,
        ty: &WasmFuncType,
        host_fn: usize,
    ) -> Result<CompiledFunction, CompileError> {
        let isa = &*self.isa;
        let pointer_type = isa.pointer_type();
        let wasm_signature = indirect_signature(isa, ty);
        let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
        // The host signature has an added parameter for the `values_vec`
        // input/output buffer in addition to the size of the buffer, in units
        // of `ValRaw`.
        host_signature.params.push(ir::AbiParam::new(pointer_type));
        host_signature.params.push(ir::AbiParam::new(pointer_type));

        let CompilerContext {
            mut func_translator,
            codegen_context: mut context,
        } = self.take_context();

        context.func =
            ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wasm_signature);

        let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
        let block0 = builder.create_block();

        let (values_vec_ptr_val, values_vec_len) =
            self.wasm_to_host_spill_args(ty, &mut builder, block0);

        let block_params = builder.func.dfg.block_params(block0);
        let callee_args = [
            block_params[0],
            block_params[1],
            values_vec_ptr_val,
            builder
                .ins()
                .iconst(pointer_type, i64::from(values_vec_len)),
        ];

        let new_sig = builder.import_signature(host_signature);
        let callee_value = builder.ins().iconst(pointer_type, host_fn as i64);
        builder
            .ins()
            .call_indirect(new_sig, callee_value, &callee_args);

        self.wasm_to_host_load_results(ty, &mut builder, values_vec_ptr_val);

        let func = self.finish_trampoline(&mut context, isa)?;
        self.save_context(CompilerContext {
            func_translator,
            codegen_context: context,
        });
        Ok(func)
    }

    /// Used for spilling arguments in wasm-to-host trampolines into the stack
    /// of the function of `builder` specified.
    ///
    /// The `block0` is the entry block of the function and `ty` is the wasm
    /// signature of the trampoline generated. This function will allocate a
    /// stack slot suitable for storing both the arguments and return values of
    /// the function, and then the arguments will all be stored in this block.
    ///
    /// The stack slot pointer is returned in addition to the size, in units of
    /// `ValRaw`, of the stack slot.
    fn wasm_to_host_spill_args(
        &self,
        ty: &WasmFuncType,
        builder: &mut FunctionBuilder,
        block0: ir::Block,
    ) -> (Value, u32) {
        let isa = &*self.isa;
        let pointer_type = isa.pointer_type();

        // Compute the size of the values vector.
        let value_size = mem::size_of::<u128>();
        let values_vec_len = cmp::max(ty.params().len(), ty.returns().len());
        let values_vec_byte_size = u32::try_from(value_size * values_vec_len).unwrap();
        let values_vec_len = u32::try_from(values_vec_len).unwrap();

        let ss = builder.func.create_stack_slot(ir::StackSlotData::new(
            ir::StackSlotKind::ExplicitSlot,
            values_vec_byte_size,
        ));

        builder.append_block_params_for_function_params(block0);
        builder.switch_to_block(block0);
        builder.seal_block(block0);

        // Note that loads and stores are unconditionally done in the
        // little-endian format rather than the host's native-endianness,
        // despite this load/store being unrelated to execution in wasm itself.
        // For more details on this see the `ValRaw` type in the
        // `wasmtime-runtime` crate.
        let mut mflags = MemFlags::trusted();
        mflags.set_endianness(ir::Endianness::Little);

        let values_vec_ptr_val = builder.ins().stack_addr(pointer_type, ss, 0);
        for i in 0..ty.params().len() {
            let val = builder.func.dfg.block_params(block0)[i + 2];
            builder
                .ins()
                .store(mflags, val, values_vec_ptr_val, (i * value_size) as i32);
        }
        (values_vec_ptr_val, values_vec_len)
    }

    /// Use for loading the results of a host call from a trampoline's stack
    /// space.
    ///
    /// This is intended to be used with the stack space allocated by
    /// `wasm_to_host_spill_args` above. This is called after the function call
    /// is made which will load results from the stack space and then return
    /// them with the appropriate ABI (e.g. System-V).
    fn wasm_to_host_load_results(
        &self,
        ty: &WasmFuncType,
        builder: &mut FunctionBuilder,
        values_vec_ptr_val: Value,
    ) {
        let isa = &*self.isa;
        let value_size = mem::size_of::<u128>();

        // Note that this is little-endian like `wasm_to_host_spill_args` above,
        // see notes there for more information.
        let mut mflags = MemFlags::trusted();
        mflags.set_endianness(ir::Endianness::Little);

        let mut results = Vec::new();
        for (i, r) in ty.returns().iter().enumerate() {
            let load = builder.ins().load(
                value_type(isa, *r),
                mflags,
                values_vec_ptr_val,
                (i * value_size) as i32,
            );
            results.push(load);
        }
        builder.ins().return_(&results);
        builder.finalize();
    }

    fn finish_trampoline(
        &self,
        context: &mut Context,
        isa: &dyn TargetIsa,
    ) -> Result<CompiledFunction, CompileError> {
        let mut code_buf = Vec::new();
        context
            .compile_and_emit(isa, &mut code_buf)
            .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;

        // Processing relocations isn't the hardest thing in the world here but
        // no trampoline should currently generate a relocation, so assert that
        // they're all empty and if this ever trips in the future then handling
        // will need to be added here to ensure they make their way into the
        // `CompiledFunction` below.
        assert!(context
            .mach_compile_result
            .as_ref()
            .unwrap()
            .buffer
            .relocs()
            .is_empty());

        let unwind_info = if isa.flags().unwind_info() {
            context
                .create_unwind_info(isa)
                .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
        } else {
            None
        };

        Ok(CompiledFunction {
            body: code_buf,
            unwind_info,
            relocations: Vec::new(),
            stack_slots: Default::default(),
            value_labels_ranges: Default::default(),
            info: Default::default(),
            address_map: Default::default(),
            traps: Vec::new(),
        })
    }

    pub fn append_dwarf(
        &self,
        obj: &mut Object<'_>,
        translation: &ModuleTranslation<'_>,
        funcs: &CompiledFunctions,
        tunables: &Tunables,
        func_symbols: &PrimaryMap<DefinedFuncIndex, SymbolId>,
    ) -> Result<()> {
        if !tunables.generate_native_debuginfo || funcs.len() == 0 {
            return Ok(());
        }
        let ofs = VMOffsets::new(
            self.isa
                .triple()
                .architecture
                .pointer_width()
                .unwrap()
                .bytes(),
            &translation.module,
        );

        let memory_offset = if ofs.num_imported_memories > 0 {
            ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
        } else if ofs.num_defined_memories > 0 {
            ModuleMemoryOffset::Defined(
                ofs.vmctx_vmmemory_definition_base(DefinedMemoryIndex::new(0)),
            )
        } else {
            ModuleMemoryOffset::None
        };
        let dwarf_sections =
            crate::debug::emit_dwarf(&*self.isa, &translation.debuginfo, &funcs, &memory_offset)
                .with_context(|| "failed to emit DWARF debug information")?;

        let (debug_bodies, debug_relocs): (Vec<_>, Vec<_>) = dwarf_sections
            .iter()
            .map(|s| ((s.name, &s.body), (s.name, &s.relocs)))
            .unzip();
        let mut dwarf_sections_ids = HashMap::new();
        for (name, body) in debug_bodies {
            let segment = obj.segment_name(StandardSegment::Debug).to_vec();
            let section_id = obj.add_section(segment, name.as_bytes().to_vec(), SectionKind::Debug);
            dwarf_sections_ids.insert(name, section_id);
            obj.append_section_data(section_id, &body, 1);
        }

        // Write all debug data relocations.
        for (name, relocs) in debug_relocs {
            let section_id = *dwarf_sections_ids.get(name).unwrap();
            for reloc in relocs {
                let target_symbol = match reloc.target {
                    DwarfSectionRelocTarget::Func(index) => {
                        func_symbols[DefinedFuncIndex::new(index)]
                    }
                    DwarfSectionRelocTarget::Section(name) => {
                        obj.section_symbol(dwarf_sections_ids[name])
                    }
                };
                obj.add_relocation(
                    section_id,
                    object::write::Relocation {
                        offset: u64::from(reloc.offset),
                        size: reloc.size << 3,
                        kind: RelocationKind::Absolute,
                        encoding: RelocationEncoding::Generic,
                        symbol: target_symbol,
                        addend: i64::from(reloc.addend),
                    },
                )?;
            }
        }

        Ok(())
    }
}

// Collects an iterator of `InstructionAddressMap` into a `Vec` for insertion
// into a `FunctionAddressMap`. This will automatically coalesce adjacent
// instructions which map to the same original source position.
fn collect_address_maps(
    code_size: u32,
    iter: impl IntoIterator<Item = (ir::SourceLoc, u32, u32)>,
) -> Vec<InstructionAddressMap> {
    let mut iter = iter.into_iter();
    let (mut cur_loc, mut cur_offset, mut cur_len) = match iter.next() {
        Some(i) => i,
        None => return Vec::new(),
    };
    let mut ret = Vec::new();
    for (loc, offset, len) in iter {
        // If this instruction is adjacent to the previous and has the same
        // source location then we can "coalesce" it with the current
        // instruction.
        if cur_offset + cur_len == offset && loc == cur_loc {
            cur_len += len;
            continue;
        }

        // Push an entry for the previous source item.
        ret.push(InstructionAddressMap {
            srcloc: cvt(cur_loc),
            code_offset: cur_offset,
        });
        // And push a "dummy" entry if necessary to cover the span of ranges,
        // if any, between the previous source offset and this one.
        if cur_offset + cur_len != offset {
            ret.push(InstructionAddressMap {
                srcloc: FilePos::default(),
                code_offset: cur_offset + cur_len,
            });
        }
        // Update our current location to get extended later or pushed on at
        // the end.
        cur_loc = loc;
        cur_offset = offset;
        cur_len = len;
    }
    ret.push(InstructionAddressMap {
        srcloc: cvt(cur_loc),
        code_offset: cur_offset,
    });
    if cur_offset + cur_len != code_size {
        ret.push(InstructionAddressMap {
            srcloc: FilePos::default(),
            code_offset: cur_offset + cur_len,
        });
    }

    return ret;

    fn cvt(loc: ir::SourceLoc) -> FilePos {
        if loc.is_default() {
            FilePos::default()
        } else {
            FilePos::new(loc.bits())
        }
    }
}

fn mach_reloc_to_reloc(reloc: &MachReloc) -> Relocation {
    let &MachReloc {
        offset,
        kind,
        ref name,
        addend,
    } = reloc;
    let reloc_target = if let ExternalName::User { namespace, index } = *name {
        debug_assert_eq!(namespace, 0);
        RelocationTarget::UserFunc(FuncIndex::from_u32(index))
    } else if let ExternalName::LibCall(libcall) = *name {
        RelocationTarget::LibCall(libcall)
    } else {
        panic!("unrecognized external name")
    };
    Relocation {
        reloc: kind,
        reloc_target,
        offset,
        addend,
    }
}

fn mach_trap_to_trap(trap: &MachTrap) -> TrapInformation {
    let &MachTrap { offset, code } = trap;
    TrapInformation {
        code_offset: offset,
        trap_code: match code {
            ir::TrapCode::StackOverflow => TrapCode::StackOverflow,
            ir::TrapCode::HeapOutOfBounds => TrapCode::HeapOutOfBounds,
            ir::TrapCode::HeapMisaligned => TrapCode::HeapMisaligned,
            ir::TrapCode::TableOutOfBounds => TrapCode::TableOutOfBounds,
            ir::TrapCode::IndirectCallToNull => TrapCode::IndirectCallToNull,
            ir::TrapCode::BadSignature => TrapCode::BadSignature,
            ir::TrapCode::IntegerOverflow => TrapCode::IntegerOverflow,
            ir::TrapCode::IntegerDivisionByZero => TrapCode::IntegerDivisionByZero,
            ir::TrapCode::BadConversionToInteger => TrapCode::BadConversionToInteger,
            ir::TrapCode::UnreachableCodeReached => TrapCode::UnreachableCodeReached,
            ir::TrapCode::Interrupt => TrapCode::Interrupt,

            // these should never be emitted by wasmtime-cranelift
            ir::TrapCode::User(_) => unreachable!(),
        },
    }
}

fn mach_stack_maps_to_stack_maps(mach_stack_maps: &[MachStackMap]) -> Vec<StackMapInformation> {
    // This is converting from Cranelift's representation of a stack map to
    // Wasmtime's representation. They happen to align today but that may
    // not always be true in the future.
    let mut stack_maps = Vec::new();
    for &MachStackMap {
        offset_end,
        ref stack_map,
        ..
    } in mach_stack_maps
    {
        let stack_map = wasmtime_environ::StackMap::new(
            stack_map.mapped_words(),
            stack_map.as_slice().iter().map(|a| a.0),
        );
        stack_maps.push(StackMapInformation {
            code_offset: offset_end,
            stack_map,
        });
    }
    stack_maps.sort_unstable_by_key(|info| info.code_offset);
    stack_maps
}